Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Obesity induced hypertension: The main pathophysiological mechanisms

https://doi.org/10.18705/1607-419X-2021-27-3-260-268

Abstract

In most countries worldwide, hypertension (HTN) occupies a leading position in the structure of modifiable risk factors for cardiovascular diseases and their complications. One of the main reasons for this trend is the increasing prevalence of obesity, which is becoming an important risk factor for high blood pressure (BP). The results of numerous epidemiological studies showed an association between obesity (assessed by body mass index (BMI)) and BP levels, as well as a prognostic role of BMI in relation to the development of HTN. However, there is currently no consensus on the obesity criterion that most accurately predicts the risk of HTN and associated complications. Data from prospective observational studies showed a greater prognostic value of indirect and direct indicators of abdominal and ectopic visceral adipose tissue.These facts stimulated research aimed at revealing the pathophysiological mechanisms of HTN in patients with overweight and obesity, which are reviewed in this article.

About the Authors

G. A. Chumakova
Altai State Medical University; Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Galina A. Chumakova, MD, PhD, DSc, Professor, Therapy and General Practice Department, Altai State Medical University, Leading  Researcher, Research Institute for Complex Issues of Cardiovascular Diseases

Barnaul

Kemerovo



T. Y. Kuznetsova
Petrozavodsk State University
Russian Federation

Tatyana Y. Kuznetsova, MD, PhD, DSc, Associate Professor, Head, Department for Internal Diseases, Medical Institute

Petrozavodsk



M. A. Druzhilov
Petrozavodsk State University
Russian Federation

Mark A. Druzhilov, MD, PhD, Associate Professor, Postgraduate Training Center, Medical Institute

Petrozavodsk



N. G. Veselovskaya
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Nadezhda G. Veselovskaya, MD, PhD, DSc, Senior Researcher

Kemerovo

 



References

1. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1223–1249. doi: 10.1016/S0140-6736(20)30752-2

2. Williams B, Mancia G, Spiering W, Rosei E, Azizi M, Burnier M et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104. doi: 10.1093/eurheartj/ehy339

3. Erina AM, Rotar OP, Solntsev VN, Shalnova SA, Deev AD, Baranova EI et al. Epidemiology of arterial hypertension in Russian Federation — importance of choice of criteria of diagnosis. Kardiologiia. 2019;59(6):5–11. doi: 10.18087/cardio.2019.6.2595. In Russian.

4. GBD2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 Years. N Engl J Med. 2017;377(1):13–27. doi: 10.1056/NEJMoa1614362

5. Balanova YuA, Shalnova SA, Deev AD, Imaeva AE, Kontsevaya AV, Muromtseva GA et al. Obesity in Russian population — prevalence and association with the non-communicable diseases risk factors. Russian Journal of Cardiology. 2018;23(6):123–30. doi: 10.15829/1560-4071-2018-6-123-130. In Russian.

6. Hall J, do Carmo J, da Silva A, Wang Z, Hall M. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006. doi: 10.1161/CIRCRESAHA.116.305697

7. Fall T, Hägg S, Mägi R, Ploner A, Fischer K, Horikoshi M et al. The role of adiposity in cardiometabolic traits: a Mendelian randomization analysis. PLoS Med. 2013;10(6):e1001474. doi: 10.1371/journal.pmed.1001474

8. Holmes M, Lange L, Palmer T, Lanktree M, North K, Almoguera B et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am J Hum Genet. 2014;94(2):198–208. doi: 10.1016/j.ajhg.2013.12.014

9. Shariq O, McKenzie T. Obesity-related hypertension: a review of pathophysiology, management, and the role of metabolic surgery. Gland Surg. 2020;9(1):80–93. doi: 10.21037/gs.2019.12.03

10. Reisin E, Graves J, Yamal J, Barzilay J, Pressel S, Einhorn P et al. Blood pressure control and cardiovascular outcomes in normal-weight, overweight, and obese hypertensive patients treated with three different antihypertensives in ALLHAT. J Hypertens. 2014;32(7):1503–1513. doi: 10.1097/HJH.0000000000000204

11. Tadic M, Cuspidi C. Obesity and resistant hypertension: never ending story. J Clin Hypertens. 2019;21(10):1516–1518. doi: 10.1111/jch.13669

12. Sattar N, McInnes I, McMurray J. Obesity is a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation. 2020;142(1):4–6. doi: 10.1161/CIRCULATIONAHA.120.047659

13. Shah H, Khan M, Dhurandhar N, Hegde V. The triumvirate: why hypertension, obesity, and diabetes are risk factors for adverse effects in patients with COVID-19. Acta Diabetol. 2021;1–13. doi: 10.1007/s00592-020-01636-z

14. Tsygankova DP, Krivoshapova KE, Maksi mov SA, Indukaeva EV, Shapovalova EB, Artamonova GV et al. Obesity and hypertension: the role of criteria. Systemnye Gipertenzii = Systemic Hypertension. 2019;16(1):32–36. doi: 10.26442/2075082X.2019.180168. In Russian.

15. Chen Z, Smith M, Du H, Guo Y, Clarke R, Bian Z et al. Blood pressure in relation to general and central adiposity among 500 000 adult Chinese men and women. Int J Epidemiol. 2015;44(4):1305–1319. doi: 10.1093/ije/dyv012

16. Gnatiuc L, Alegre-Díaz J, Halsey J, Herrington W, López-Cervantes M, Lewington S et al. Adiposity and blood pressure in 110000 Mexican adults. Hypertension. 2017;69(4):608–614. doi: 10.1161/HYPERTENSIONAHA.116.08791

17. Luz R, Barbosa A, d’Orsi E. Waist circumference, body mass index and waist-height ratio: are two indices better than one for identifying hypertension risk in older adults? Prev Med. 2016;93:76–81. doi: 10.1016/j.ypmed.2016.09.024

18. Hu L, Huang X, You C, Li J, Hong K, Li P et al. Prevalence and risk factors of prehypertension and hypertension in Southern China. PLoS ONE. 2017;12(1):e0170238. doi: 10.1371/journal.pone.0170238

19. Chandra A, Neeland I, Berry J, Ayers C, Rohatgi A, Das S et al. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J Am Coll Cardiol. 2014;64(10):997–1002. doi: 10.1016/j.jacc.2014.05.057

20. Sullivan C, Kahn S, Fujimoto W, Hayashi T, Leonetti D, Boyko E. Change in intra-abdominal fat predicts the risk of hypertension in Japanese Americans. Hypertension. 2015;66(1): 134–140. doi: 10.1161/HYPERTENSIONAHA.114.04990

21. Seven E, Thuesen B, Linneberg A, Jeppesen J. Abdominal adiposity distribution quantified by ultrasound imaging and incident hypertension in a general population. Hypertension. 2016;68(5):1115–1122. doi: 10.1161/HYPERTENSIONAHA.116.07306

22. Druzhilov MA, Kuznetsova TY. Internal obesity as a risk factor for arterial hypertension. Russ J Cardiol. 2019;4:7–12. doi: 10.15829/1560-4071-2019-4-7-12. In Russian.

23. Foster M, Hwang S, Porter S, Massaro J, Hoffmann U, Fox C. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58(5):784–790. doi: 10.1161/HYPERTENSIONAHA.111.175315

24. Konradi AO. Autonomic nervous system in arterial hyper tension and heart failure: current understanding of its pathophysiologic role and innovative treatment approaches. Russ J Cardiol. 2013;(4):52–63. doi: 10.15829/1560-4071-2013-4-52-63. In Russian.

25. Grassi G, Biffi A, Seravalle G, Trevano F, dell’Oro R, Corrao G et al. Sympathetic neural overdrive in the obese and overweight state. Hypertension. 2019;74(2):349–358. doi: 10.1161/HYPERTENSIONAHA.119.12885

26. Bell B, Rahmouni K. Leptin as a mediator of obesity-induced hypertension. Curr Obes Rep. 2016;5(4):397–404. doi: 10.1007/s13679-016-0231-x

27. Da Silva А, do Carmo J, Wang Z, Hall J. The brain melanocortin system, sympathetic control, and obesity hypertension. Physiology (Bethesda). 2014;29(3):196–202. doi: 10.1152/physiol.00061.2013

28. Chumakova GA, Ott AV, Veselovskaya NG, Gritsenko OV, Shenkova NN. Pathogenetic mechanisms of leptin resistance. Russian Journal of Cardiology. doi: 10.15829/1560-4071-2015-4-107-110.2015;4:107–110. In Russian.

29. Ward K, Bardgett J, Wolfgang L, Stocker S. Sympathetic response to insulin is mediated by melanocortin ¾ receptors in the hypothalamic paraventricular nucleus. Hypertension. 2011;57(3): 435–441. doi: 10.1161/HYPERTENSIONAHA.110.160671

30. Conde S, Ribeiro M, Melo B, Guarino M, Sacramento J. Insulin resistance: a new consequence of altered carotid body chemoreflex? J Physiol. 2017;595(1):31–41. doi: 10.1113/JP271684

31. Iturriaga R. Translating carotid body function into clinical medicine. J Physiol. 2018;596(15):3067–3077. doi: 10.1113/JP275335

32. Dewan N, Nieto F, Somers V. Intermittent hypoxemia and OSA: implications for comorbidities. Chest. 2015;147(1):266–274. doi: 10.1378/chest.14-0500

33. Lambert E, Esler M, Schlaich M, Dixon J, Eikelis N, Lambert G. Obesity-Associated organ damage and sympathetic nervous activity. Hypertension. 2019;73(6):1150–1159. doi: 10.1161/HYPERTENSIONAHA.118.11676

34. Cabandugama P, Gardner M, Sowers J. The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin North Am. 2017;101(1):129–137. doi: 10.1016/j.mcna.2016.08.009

35. DeMarco V, Aroor A, Sowers J. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10(6):364–376. doi: 10.1038/nrendo.2014.44

36. Marcus Y, Shefer G, Stern N. Adipose tissue reninangiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol. 2013;378(1–2):1–14. doi: 10.1016/j.mce.2012.06.021

37. Schütten M, Houben A, Leeuw P, Stehouwer C. The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension. Physiology. 2017;32(3):197–209. doi: 10.1152/physiol.00037.2016

38. Briones A, Dinh Cat A, Callera G, Yogi A, Burger D, He Y et al. Adipocytes produce aldosterone through calcineurin dependent signaling pathways: implications in diabetes mellitusassociated obesity and vascular dysfunction. Hypertension. 2012;59(5):1069–1078. doi: 10.1161/HYPERTENSIONAHA.111.190223

39. Dinh Cat A, Friederich-Persson M, White A, Touyz R. Adipocytes, aldosterone and obesity-related hypertension. J Mol Endocrinol. 2016;57(1):7–21. doi: 10.1530/JME-16-0025

40. Fujita T. Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol. 2014;25(6):1148–1155. doi: 10.1681/ASN.2013121258

41. Tsuboi N, Okabayashi Y, Shimizu A, Yokoo T. The renal pathology of obesity. Kidney Int Rep. 2017;2(2):251–260. doi: 10.1016/j.ekir.2017.01.007

42. Chughtai H, Morgan T, Rocco M, Stacey B, Brinkley T, Ding J et al. Renal sinus fat and poor blood pressure control in middle-aged and elderly individuals at risk for cardiovascular events. Hypertension. 2010;56(5):901–906. doi: 10.1161/HYPERTENSIONAHA.110.157370

43. Liu B, Sun W, Kong X. Perirenal fat: a unique fat pad and potential target for cardiovascular disease. Angiology. 2018;70(1):000331971879996. doi: 10.1177/0003319718799967

44. Soleimani M. Insulin resistance and hypertension: new insights. Kidney Int. 2015;87(3):497–499. doi: 10.1038/ki.2014.392

45. Druzhilov MA, Druzhilova OY, Kuznetsova TY. Aortic pulse wave velocity as a prognostic tool of hypertension in obesity. Arterial’naya Gipertenziya = Arterial Hypertension. 2019;25(4):416–422. doi: 10.18705/1607-419X-2019-25-4-416-422. In Russian.

46. Padmanabhan S, Caulfield M, Dominiczak A. Genetic and molecular aspects of hypertension. Circ Res. 2015;116(6):937–959. doi: 10.1161/CIRCRESAHA.116.303647

47. Muniyappa R, Sowers J. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord. 2013;14(1):5– 12. doi:10.1007/s11154-012-9229-1

48. Zachariah J, Hwang S, Hamburg N, Benjamin E, Larson M, Levy D et al. Circulating adipokines and vascular function: cross-sectional associations in a community-based cohort. Hypertension. 2016;67(2):294–300. doi: 10.1161/HYPERTENSIONAHA.115.05949

49. Topouchian J, Labat C, Gautier S, Bäck M, Achimastos A, Blacher J et al. Effects of metabolic syndrome on arterial function in different age groups: The Advanced Approach to Arterial Stiffness Study. J. Hypertens. 2018;36(4):824–833. doi: 10.1097/HJH.0000000000001631

50. Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol. 2017;174(20):3425–3442. doi: 10.1111/bph.13650

51. Asferg C, Nielsen S, Andersen U, Linneberg A, Møller D, Hedley P et al. Relative atrial natriuretic peptide deficiency and inadequate renin and angiotensin II suppression in obese hypertensive men. Hypertension. 2013;62(1):147–153. doi: 10.1161/HYPERTENSIONAHA.111.00791

52. Pivovarova O, Gögebakan O, Klöting N, Sparwasser A, Weickert M, Haddad I et al. Insulin up-regulates natriuretic peptide clearance receptor expression in the subcutaneous fat depot in obese subjects: a missing link between CVD risk and obesity? J Clin Endocrinol Metab. 2012;97(5):731–739. doi: 10.1210/jc.2011–2839

53. Standeven K, Hess K, Carter A, Rice G, Cordell P, Balmforth A et al. Neprilysin, obesity and the metabolic syndrome. Int J Obes (Lond). 2011;35(8):1031–1040. doi: 10.1038/ijo.2010.227

54. Zois N, Bartels E, Hunter I, Kousholt B, Olsen L, Goetze J. Natriuretic peptides in cardiometabolic regulation and disease. Nat Rev Cardiol. 2014;11(7):403–412. doi: 10.1038/nrcardio.2014.64

55. Boyarinova MA, Rotar OP, Konradi AO. Adipokines and cardiometabolic syndrome. Arterial’naya Gipertenziya = Arterial Hypertension. 2014;20(5):422–432. doi: 10.18705/1607-419X-2014-20-5-422-432. In Russian.

56. Wang Y, Ma X, Lau W. Cardiovascular adiponectin resistance: the critical role of adiponectin receptor modification. Trends Endocrinol Metabol. 2017;28(7):519–530. doi: 10.1016/j.tem.2017.03.004

57. Schiffrin E. Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond). 2014;126(4):267–274. doi: 10.1042/CS20130407

58. Kalathookunnel Antony A, Lian Z, Wu H. T cells in adipose tissue in aging. Front Immunol. 2018;9:2945. doi: 10.3389/fimmu.2018.02945

59. Chaudhary K, Malhotra K, Sowers J, Aroor A. Uric acid — key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013;3(3):208–220. doi: 10.1159/000355405

60. Marques F, Mackay C, Kaye D. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018;15(1):20–32. doi: 10.1038/nrcardio.2017.120

61. Barantsevich NE, Konradi AO, Barantsevich EP. Arterial hypertension: The role of gut microbiota. Arterial’naya Gipertenziya = Arterial Hypertension. 2019;25(5):460– 466. doi: 10.18705/1607-419X-2019-25-5-460-466. In Russian.

62. Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res. 2017;122:1–7. doi: 10.1016/j.phrs.2017.05.013

63. Chumakova GA, Kuznetsova TY, Druzhilov MA, Veselovskaya NG. Visceral adiposity as a global factor of cardiovascular risk. Russian Journal of Cardiology. 2018;5:7–14. doi: 10.15829/1560-4071-2018-5-7-14. In Russian.


Supplementary files

Review

For citations:


Chumakova G.A., Kuznetsova T.Y., Druzhilov M.A., Veselovskaya N.G. Obesity induced hypertension: The main pathophysiological mechanisms. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2021;27(3):260-268. (In Russ.) https://doi.org/10.18705/1607-419X-2021-27-3-260-268

Views: 1828


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)