Preview

Артериальная гипертензия

Расширенный поиск

Трансгенерационное наследование: современные подходы к поиску причин заболеваний

https://doi.org/10.18705/1607-419X-2021-27-2-122-132

Полный текст:

Аннотация

Результаты большого количества наблюдений позволяют предполагать, что окружающая среда оказывает влияние на организм без вовлечения генетических механизмов. Изучение роли эпигенетики в основных процессах развития и физиологии значительно расширяет наше понимание биологии организма. В настоящее время одной из актуальных тем для изучения возможностей предотвращения развития заболеваний является исследование трансгенерационных эффектов — когда не только генетические, но и фенотипические адаптивные механизмы передаются через поколения. Накопленные данные свидетельствуют о том, что влияние факторов окружающей среды (вредные привычки, стресс, избыточное или недостаточное питание, кишечная микробиота и другие) в период раннего развития может способствовать эпигенетическому трансгенерационному наследованию фенотипической изменчивости. Эпигенетические процессы могут изменять экспрессию генов, что, в свою очередь, может или повысить восприимчивость, или способствовать развитию толерантности к заболеваниям в следующих поколениях. Эпигенетические биомаркерные сигнатуры могут быть использованы в будущем в качестве диагностического инструмента для оценки наличия у человека специфической восприимчивости к заболеваниям или воздействию токсикантов окружающей среды. В настоящем обзоре обсуждаются молекулярно-генетические механизмы трансгенерационного наследования и влияние различных факторов риска.

Об авторах

К. М. Толкунова
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Толкунова Кристина Михайловна — аспирант Института сердца и сосудов ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России

Санкт-Петербург



Е. В. Могучая
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Могучая Екатерина Викторовна — младший научный сотрудник научно-исследовательской лаборатории эпидемиологии неинфекционных заболеваний Института сердца и сосудов ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России

Санкт-Петербург



О. П. Ротарь
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени В. А. Алмазова» Министерства здравоохранения Российской Федерации
Россия

Ротарь Оксана Петровна — доктор медицинских наук, главный научный сотрудник научно-исследовательской лаборатории эпидемиологии неинфекционных заболеваний Института сердца и сосудов ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России

ул. Аккуратова, д. 2, Санкт-Петербург, 197341



Список литературы

1. Avgustinova A, Benitah SA. Epigenetic control of adult stem cell function. Nat Rev Mol Cell Biol. 2016;17(10):643–658. doi:10.1038/nrm.2016.76

2. Perera BPU, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. Environ Mol Mutagen. 2020;61(1):176–192. doi:10.1002/em.22311

3. Tiffon C. The Impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci. 2018;19(11):3425. doi:10.3390/ijms19113425

4. Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol. 2008;25(1):2–6. doi:10.1016/j.reprotox.2007.09.001

5. Skinner MK. A new kind of inheritance. Sci Am. 2014;311(2):44–51. doi:10.1038/scientificamerican0814-44

6. Singer J, Roberts-Ems J, Riggs AD. Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II. Science. 1979;203(4384):1019–1021. doi:10.1126/science.424726

7. Kriaucionis S, Tahiliani M. Expanding the epigenetic landscape: novel modifications of cytosine in genomic DNA. Cold Spring Harb Perspect Biol. 2014;6(10): a018630. doi:10.1101/cshperspect.a018630

8. Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet. 2018;4(2): dvy016. doi:10.1093/eep/dvy016

9. Kornfeld JW, Bruning JC. Regulation of metabolism by long, non-coding RNAs. Front Genet. 2014;5:57. doi:10.3389/fgene.2014.00057

10. Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep. 2017;37(1):3–9. doi:10.3892/or.2016.5236

11. Sibbritt T, Patel HR, Preiss T. Mapping and significance of the mRNA methylome. Wiley Interdiscip Rev RNA. 2013;4(4): 397–422. doi:10.1002/wrna.1166

12. Yaniv M. Chromatin remodeling: from transcription to cancer. Cancer Genet. 2014;207(9):352–357. doi:10.1016/j.cancergen.2014.03.006

13. Bygren LO, Tinghog P, Carstensen J, Edvinsson S, Kaati G, Pembrey ME et al. Change in paternal grandmothers’ early food supply influenced cardiovascular mortality of the female grandchildren. BMC Genet. 2014;15:12. doi:10.1186/1471-2156-15-12

14. Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG. 2013;120(5):548–553. doi:10.1111/1471-0528.12136

15. Manikkam M, Haque MM, Guerrero-Bosagna C, Nilsson E, Skinner MK. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult onset disease through the female germline. PLoS One. 2014;9(7):e102091. doi:10.1371/journal.pone.0102091

16. Skinner MK. Environmental epigenetics and a unified theory of the molecular aspects of evolution: a neo-lamarckian concept that facilitates neo-Darwinian evolution. Genome Biol Evol. 2015;7(5):1296–1302. doi:10.1093/gbe/evv073

17. McCarrey JR, Lehle JD, Raju SS, Wang Y, Nilsson EE, Skinner MK. Tertiary epimutations — a novel aspect of epigenetic transgenerational inheritance promoting genome instability. PLoS One. 2016;11(12): e0168038. doi:10.1371/journal.pone.0168038

18. Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics. 2011;6(7):838–842. doi:10.4161/epi.6.7.16537

19. Guerrero-Bosagna C, Savenkova M, Haque MM, Nilsson E, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of altered sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS One. 2013;8(3):e59922. doi:10.1371/journal.pone.0059922

20. Soubry A, Hoyo C, Jirtle RL, Murphy SK. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays. 2014;36(4):359–371. doi:10.1002/bies.201300113

21. Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T et al. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study. Clin Epigenetics. 2016;8:51. doi:10.1186/s13148-016-0217-2

22. Soubry A, Hoyo C, Butt CM, Fieuws S, Price TM, Murphy SK et al. Human exposure to flame-retardants is associated with aberrant DNA methylation at imprinted genes in sperm. Env Epigenetics. 2017;3(1):dvx003. doi:10.1093/eep/dvx003

23. Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A et al. Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med. 2013;11:29. doi:10.1186/1741-7015-11-29

24. Northstone K, Golding J, Davey Smith G, Miller LL, Pembrey M. Prepubertal start of father’s smoking and increased body fat in his sons: further characterisation of paternal transgenerational responses. Eur J Hum Genet. 2014;22(12):1382–1386. doi:10.1038/ejhg.2014.31

25. Wu H, Ashcraft L, Whitcomb BW, Rahil T, Tougias E, Sites CK et al. Parental contributions to early embryo development: influences of urinary phthalate and phthalate alternatives among couples undergoing IVF treatment. Hum Reprod. 2017;32(1):65–75. doi:10.1093/humrep/dew301

26. Soubry A. Epigenetics as a driver of developmental origins of health and disease: did we forget the fathers? Bioessays. 2018;40(1). doi:10.1002/bies.201700113

27. Wankerl M, Miller R, Kirschbaum C, Hennig J, Stalder T, Alexander N. Effects of genetic and early environmental risk factors for depression on serotonin transporter expression and methylation profiles. Transl Psychiatry. 2014;4(6):e402. doi:10.1038/tp.2014.37

28. Lehrner A, Bierer LM, Passarelli V, Pratchett LC, Flory JD, Bader HN et al. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors. Psychoneuroendocrinology. 2014;40:213–220. doi:10.1016/j.psyneuen.2013.11.019

29. Yehuda R, Daskalakis NP, Lehrner A, Desarnaud F, Bader HN, Makotkine I et al. Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. Am J Psychiatry. 2014;171(8):872–880. doi:10.1176/appi.ajp.2014.13121571

30. Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F et al. Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry. 2016; 80(5):372–380. doi:10.1016/j.biopsych.2015.08.005

31. Wang Z, Wang Q, Liu Y. You are what your parents ate: A Darwinian perspective on the inheritance of food effects. Trends Food Sci Technol. 2016;54:204–207. doi:10.1016/j.tifs.2016.05.015

32. Li J, Na L, Ma H, Zhang Z, Li T, Lin L et al. Multigenerational effects of parental prenatal exposure to famine on adult offspring cognitive function. Sci Rep. 2015;5:13792. doi:10.1038/srep13792

33. Alwasel SH, Harrath A, Aljarallah JS, Abotalib Z, Osmond C, Al Omar SY et al. Intergenerational effects of in utero exposure to Ramadan in Tunisia. Am J Hum Biol. 2013;25(3):341–343. doi:10.1002/ajhb.22374

34. Veenendaal MV, Painter RC, de Rooij SR, Bossuyt PM, van der Post JA, Gluckman PD et al. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG. 2013;120(5):548–53. doi:10.1111/1471-0528.12136

35. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun. 2014;5:3746. doi:10.1038/ncomms4746

36. Тульский И. В., Багров Г. И. Блокадный синдром Рачкова. СПб., 2006.

37. ZIUA EUROPEANĂ ÎMPOTRIVA OBEZITĂȚII (ZEIO) 2019. URL: europeanobesityday.eu

38. Popa S, Moţa M, Popa A, Moţa E, Serafinceanu C, Guja C et al. Prevalence of overweight/obesity, abdominal obesity and metabolic syndrome and atypical cardiometabolic phenotypes in the adult Romanian population: PREDATORR study. J Endocrinol Invest. 2016;39(9):1045–1053. doi:10.1007/s40618-016-0470-4

39. Stoica V, Gardan DA, Constantinescu I, Gardan IP, Calenic B, Diculescu M. Transgenerational effects of traumatic historical events on the incidence of metabolic syndrome / nonalcoholic fatty liver disease in the Romanian Population. J Med Life. 2020;13(4):475–483. doi:10.25122/jml-2020-0156

40. Heckman MA, Weil J, Gonzalez de Mejia E. Caffeine (1, 3, 7-trimethylxanthine) in foods: a comprehensive review on consumption, functionality, safety, and regulatory matters. J Food Sci. 2010;75(3): R 77–R 87. doi:10.1111/j.1750-3841.2010.01561.x

41. Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet. 2016;25(24):5472–5482. doi:10.1093/hmg/ddw334

42. Voerman E, Jaddoe VW, Gishti O, Hofman A, Franco OH, Gaillard R. Maternal caffeine intake during pregnancy, early growth, and body fat distribution at school age. Obesity (Silver Spring). 2016;24(5):1170–1177. doi:10.1002/oby.21466

43. Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK et al. Cohort profile update: The Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2016;45(2):382–388. doi:10.1093/ije/dyw029

44. Papadopoulou E, Botton J, Brantsæter AL, Haugen M, Alexander J, Meltzer HM et al. Maternal caffeine intake during pregnancy and childhood growth and overweight: results from a large Norwegian prospective observational cohort study. BMJ Open. 2018;8(3):e018895. doi:10.1136/bmjopen-2017–018895

45. Li DK, Ferber JR, Odouli R. Maternal caffeine intake during pregnancy and risk of obesity in offspring: a prospective cohort study. Int J Obes. 2015;39(4):658–664. doi:10.1038/ijo.2014.196

46. Barker DJ. Fetal origins of coronary heart disease. Br Med J. 1995;311(6998):171–174. doi:10.1136/bmj.311.6998.171

47. Subhan FB, Colman I, McCargar L, Bell RC, APrON Study Team. Higher pre-pregnancy BMI and excessive gestational weight gain are risk factors for rapid weight gain in infants. Matern Child Health J. 2017;21(6):1396–1407. doi:10.1007/s10995-016-2246-z

48. Lawlor DA, Relton C, Sattar N, Nelson SM. Maternal adiposity — a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol. 2012;8(11):679–688. doi:10.1038/nrendo.2012.176

49. Berglind D, Willmer M, Näslund E, Tynelius P, Sørensen TI, Rasmussen F. Differences in gestational weight gain between pregnancies before and after maternal bariatric surgery correlate with differences in birth weight but not with scores on the body mass index in early childhood. Pediatr Obes. 2014;9(6):427–434. doi:10.1111/j.2047-6310.2013.00205.x

50. Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110. doi:10.1093/ije/dys066

51. Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2015;44(4):1288–1304. doi:10.1093/ije/dyv042

52. Guénard F, Tchernof A, Deshaies Y, Cianflone K, Kral JG, Marceau P et al. Methylation and expression of immune and inflammatory genes in the offspring of bariatric bypass surgery patients. J Obes. 2013;2013:492170. doi:10.1155/2013/492170

53. Herbstman JB, Wang S, Perera FP, Lederman SA, Vishnevetsky J, Rundle AG et al. Predictors and consequences of global DNA methylation in cord blood and at three years. PLoS One. 2013;8(9): e72824. doi:10.1371/journal.pone.0072824

54. Relton CL, Groom A, St Pourcain B, Sayers AE, Swan DC, Embleton ND et al. DNA methylation patterns in cord blood DNA and body size in childhood. PLoS One. 2012;7(3):e31821. doi:10.1371/journal.pone.0031821

55. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60(5):1528–1534. doi:10.2337/db10-0979

56. Campbell JM, Lane M, Owens JA, Bakos HW. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online. 2015;31(5):593–604. doi:10.1016/j.rbmo.2015.07.012

57. Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T et al. Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin Epigenetics. 2016;8:51. doi:10.1186/s13148-016-0217-2

58. Bhutta ZA, Das JK, Rizvi A, Gaffey MF, Walker N, Horton S et al. Lancet Nutrition Interventions Review Group, the Maternal and Child Nutrition Study Group. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet. 2013;382(9890):452–477. doi:10.1016/S0140-6736(13)60996-4

59. Devaux CA, Raoult D. The microbiological memory, an epigenetic regulator governing the balance between good health and metabolic disorders. Front Microbiol. 2018;9:1379. doi:10.3389/fmicb.2018.01379

60. Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome. 2017;5(1):48. doi:10.1186/s40168-017-0268-4

61. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129. doi:10.1038/srep23129

62. Chu DM, Meyer KM, Prince AL, Aagaard KM. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes. 2016;7(6):459–470. doi:10.1080/19490976.2016.1241357

63. Neu J. Developmental aspects of maternal-fetal, and infant gut microbiota and implications for long-term health. Matern Health Neonatol Perinatol. 2015;1:6. doi:10.1186/s40748-015-0007-4

64. Zhou L, Xiao X. The role of gut microbiota in the effects of maternal obesity during pregnancy on offspring metabolism. Biosci Rep. 2018;38(2): BSR 20171234. doi:10.1042/BSR20171234

65. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9(5):436–447. doi:10.1161/CIRCGENETICS.116.001506

66. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–696. doi:10.1016/j.ajhg.2016.02.019

67. Sikdar S, Joehanes R, Joubert BR, Xu CJ, Vives-Usano M, Rezwan FI et al. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics. 2019;11(13):1487–1500. doi:10.2217/epi-2019-0066


Дополнительные файлы

Для цитирования:


Толкунова К.М., Могучая Е.В., Ротарь О.П. Трансгенерационное наследование: современные подходы к поиску причин заболеваний. Артериальная гипертензия. 2021;27(2):122-132. https://doi.org/10.18705/1607-419X-2021-27-2-122-132

For citation:


Tolkunova K.M., Moguchaia E.V., Rotar O.P. Transgenerational inheritance: understanding the etiology of a disease. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2021;27(2):122-132. https://doi.org/10.18705/1607-419X-2021-27-2-122-132

Просмотров: 157


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)