Polygenic analysis of genetic susceptibility to essential hypertension
https://doi.org/10.18705/1607-419X-2022-28-1-33-45
Abstract
Objective. To investigate the molecular mechanism underlying genetic susceptibility to essential hypertension (EH) using polygenic analysis of renin-angiotensin-aldosterone system (RAAS).
Design and methods. Genotyping of renin (REN, rs2368564), angiotensinogen (AGT, rs4762), angiotensin II receptor type 1 (AGTR1, rs5186), chymase 1 (CMA1, rs1800875) and angiotensin-converting enzyme (ACE, rs1799752) polymorphic variants was performed in 346 patients with EH and 377 controls, Russians and Tatars by ethnic origin.
Results. ACE rs1799752polymorphism was significantly associated with EH risk in Tatars (PBonf = 0,003) and in the total study group (PBonf = 4,09 x 10–5). Polygenic approach identified 12 genotypes and/or alleles combinations of RAAS genes polymorphisms, significantly associated with EH in the Tatars, and 6 patterns associated with EH in the total study group. The highest risk of disease in Tatar men was associated with REN rs2368564*T + AGTR1 rs5186*C/A + ACE rs1799752*D combination (OR = 16,64, PBonf = 0,001), in the total group — with REN rs2368564*T/C + CMA1 rs1800875*G combination (OR = 2,37, PBonf = 0,045).
Conclusions. Our findings indicate that EH risk in men of Russian and Tatar ethnicity is significantly associated with ACE rs1799752 polymorphism, and the results of polygenic analysis demonstrate an association of the disease risk with genotype/allele combinations of polymorphic variants in REN (rs2368564), AGTR1 (rs5186), ACE (rs1799752), and CMA1 (rs1800875) genes.
Keywords
About the Authors
Y. R. TimashevaRussian Federation
Yanina R. Timasheva, MD, PhD, Senior Scientist, Laboratory of Physiological Genetics, Institute of Biochemistry and Genetics— Subdivision of the Ufa Federal Research Centre of Russian Academy of Sciences; Associate Professor, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University
71 October avenue, Ufa, 450054
K. A. Gerasimova
Kristina A. Gerasimova, Master’s Student
Ufa
I. A. Tuktarova
Ilsiyar A. Tuktarova, MD, PhD, Senior Scientist, Laboratory of Physiological Genetics, Institute of Biochemistry and Genetics— Subdivision
Ufa
V. V. Erdman
Vera V. Erdman, MD, PhD, Senior Scientist, Laboratory of Physiological Genetics, Institute of Biochemistry and Genetics— Subdivision
Ufa
T. R. Nasibullin
Timur R. Nasibullin, MD, PhD, Senior Scientist, Laboratory of Physiological Genetics, Institute of Biochemistry and Genetics— Subdivision
Ufa
References
1. Touyz RM, Feldman RD, Harrison DG, Schiffrin EL. A new look at the mosaic theory of hypertension. Can J Cardiol. 2020;36(5):591–592. doi:10.1016/j.cjca.2020.03.025
2. Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids. 2020;163:108701. doi:10.1016/j.steroids.2020.108701
3. Rossi GP, Ceolotto G, Caroccia B, Lenzini L. Genetic screening in arterial hypertension. Nat Rev Endocrinol. 2017;13(5): 289–298. doi:10.1038/nrendo.2016.196
4. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50(10):1412–1425. doi:10.1038/s41588-018-0205-x
5. Lip S, Padmanabhan S. Genomics of blood pressure and hypertension: extending the mosaic theory toward stratification. Can J Cardiol. 2020;36(5):694–705. doi:10.1016/j.cjca.2020.03.001
6. Lvovs D, Favorova OO, Favorov AV. A polygenic approach to the study of polygenic diseases. Acta Naturae. 2012;4(3):59–71.
7. Chazova IE, Oshepkova EV, ZhernakovaYuV. Diagnostics and treatment of arterial hypertension. Kardiologicheskyi Vestnik. 2015(1):3–30. In Russian.
8. Hristova M, Stanilova S, Miteva L. Serum concentration of renin-angiotensin system components in association with ACE I/D polymorphism among hypertensive subjects in response to ACE inhibitor therapy. Clin Exp Hypertens. 2019;41(7):662–669. doi:10.1080/10641963.2018.1529782
9. Wu Y, Yang H, Yang B, Yang K, Xiao C. Association of polymorphisms in prolylcarboxypeptidase and chymase genes with essential hypertension in the Chinese Han population. J Renin Angiotensin Aldosterone Syst. 2012;14(3):263–270. doi:10.1177/1470320312448949
10. Wu SJ, Hsieh TJ, Kuo MC, Tsai ML, Tsai KL, Chen CH et al. Functional regulation of Alu element of human angiotensinconverting enzyme gene in neuron cells. Neurobiol Aging. 2013;34(7):1921.e1–7. doi:10.1016/j.neurobiolaging.2013.01.003
11. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS et al. Human microRNA‑155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR13′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet. 2007;81(2):405–413. doi:10.1086/519979
12. Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564–567. doi:10.1111/j.1755-0998.2010.02847.x
13. Zhivotovsky LA. Populyatsionnaya biometriya (Population Biometry), Moscow: Nauka, 1991. P. 271. In Russian.
14. Favorov AV, Andreewski TV, Sudomoina MA, FavorovaOO, Parmigiani G, Ochs MF. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics. 2005;171(4):2113–2121. doi:10.1534/genetics.105.048090
15. Akopyan AA, Kirillova KI, Strazhesko ID, Samokhodskaya LM, Orlova Ya A. Association of AGT, ACE, NOS3, TNF, MMP9, CYBA polymorphism with subclinical arterial wall changes. Kardiologiia = Cardiology. 2021;61(3):57–65. doi:10.18087/cardio.2021.3.n1212. In Russian.
16. Teranishi J, Yamamoto R, Nagasawa Y, Shoji T, Iwatani H, Okada N et al. ACE insertion/deletion polymorphism (rs1799752) modifies the renoprotective effect of renin-angiotensin system blockade in patients with IgA nephropathy. J Renin Angiotensin Aldosterone Syst. 2015;16(3):633–641. doi:10.1177/1470320313515036
17. Liu D-X, Zhang Y-Q, Hu B, Zhang J, Zhao Q. Association of AT1R polymorphism with hypertension risk: an update metaanalysis based on 28,952 subjects. J Renin Angiotensin Aldosterone Syst. 2015;16(4):898–909. doi:10.1177/1470320315584096
18. Saab YB, Gard PR, Overall ADJ. The association of hypertension with renin–angiotensin system gene polymorphisms in the Lebanese population. J Renin Angiotensin Aldosterone Syst. 2011;12(4):588–594. doi:10.1177/1470320311408465
19. Mehri S, Mahjoub S, Hammami S, Zaroui A, Frih A, Betbout F et al. Renin-angiotensin system polymorphisms in relation to hypertension status and obesity in a Tunisian population. Mol Biol Rep. 2012;39(4):4059–4065. doi:10.1007/s11033-011-1187-2
20. Yako YY, Balti EV, Matsha TE, Dzudie A, Kruger D, Sobngwi E et al. Genetic factors contributing to hypertension in African-based populations: a systematic review and meta-analysis. J Clin Hypertens (Greenwich). 2018;20(3):485–495. doi:10.1111/jch.13225
21. Haas U, Sczakiel G, Laufer S. MicroRNA-mediated regulation of gene expression is affected by disease-associated SNPs within the 3′-UTR via altered RNA structure. RNA Biology. 2012;9(6):924–937. doi:10.4161/rna.20497
22. Wei CC, Hase N, Inoue Y, Bradley EW, Yahiro E, Li M et al. Mast cell chymase limits the cardiac efficacy of Ang I-converting enzyme inhibitor therapy in rodents. J Clin Invest. 2010;120(4):1229–1239. doi:10.1172/jci39345
23. Düngen HD, Kober L, Nodari S, Schou M, Otto C, Becka M et al. Safety and tolerability of the chymase inhibitor fulacimstat in patients with left ventricular dysfunction after myocardial infarction-results of the CHIARA MIA 1 trial. Clin Pharmacol Drug Dev. 2019;8(7):942–951. doi:10.1002/cpdd.633
24. Kanefendt F, Thuß U, Becka M, Boxnick S, Berse M, Schultz A et al. Pharmacokinetics, safety, and tolerability of the novel chymase inhibitor BAY1142524 in healthy male volunteers. Clin Pharmacol Drug Dev. 2019;8(4):467–479. doi:10.1002/cpdd.579
25. Amir RE, Amir O, Paz H, Sagiv M, Mor R, Sagiv M et al. Genotype-phenotype associations between chymase and angiotensin-converting enzyme gene polymorphisms in chronic systolic heart failure patients. Genet Med. 2008;10(8):593–598. doi:10.1097/GIM.0b013e3181804b9c
26. Orlowska-Baranowska E, Gora J, Baranowski R, Stoklosa P, Gadomska L, Pedzich-Placha E et al. Common genetic polymorphisms and haplotypes of chymase gene affect left ventricular hypertrophy in male patients with symptomatic aortic stenosis. Eur Heart J. 2013;34(suppl.1). doi:10.1093/eurheartj/eht309.2604
27. Fukuda M, Ohkubo T, Katsuya T, Hozawa A, Asai T, Matsubara M et al. Association of a mast cell chymase gene variant with HDL cholesterol, but not with blood pressure in the Ohasama study. Hypertens Res. 2002;25(2):179–184. doi:10.1291/hypres.25.179
28. Frossard PM, Malloy MJ, Lestringant GG, Kane JP. Haplotypes of the human renin gene associated with essential hypertension and stroke. J Hum Hypertens. 2001;15(1):49–55. doi:10.1038/sj.jhh.1001107
29. Ahmad U, Saleheen D, Bokhari A, Frossard PM. Strong association of a renin intronic dimorphism with essential hypertension. Hypertens Res. 2005;28(4):339–344. doi:10.1291/hypres.28.339
30. Parchwani DN, Patel DD, Rawtani J, Dikshit N. Association of Mbo I-RFLP at the renin locus (rs2368564) with essential hypertension. Indian J Clin Biochem. 2016;31(4):431–438. doi:10.1007/s12291-015-0546-5
31. Valdez-Velazquez LL, Mendoza-Carrera F, PerezParra SA, Rodarte-Hurtado K, Sandoval-Ramirez L, MontoyaFuentes H et al. Renin gene haplotype diversity and linkage disequilibrium in two Mexican and one German population samples. J Renin Angiotensin Aldosterone Syst. 2011;12(3):231–237. doi:10.1177/1470320310388440
32. Fu Y, Katsuya T, Asai T, Fukuda M, Inamoto N, Iwashima Y et al. Lack of correlation between Mbo I restriction fragment length polymorphism of renin gene and essential hypertension in Japanese. Hypertens Res. 2001;24(3):295–298. doi:10.1291/hypres.24.295
33. Mohana Vamsi U, Swapna N, Usha G, Vishnupriya S, Padma T. Contribution of REN gene MBbo I polymorphism in conferring risk for essential hypertension: a case control study from South India. J Renin Angiotensin Aldosterone Syst. 2013;14(3):242–247. doi:10.1177/1470320312459981
34. Afruza R, Islam LN, Banerjee S, Hassan MM, Suzuki F, Nabi AN. Renin gene polymorphisms in Bangladeshi hypertensive population. J Genomics. 2014;2:45–53. doi:10.7150/jgen.5193
35. Pavlova OS, Ogurtsova SE, Gorbat TV, Liventseva MM, Afonin VYu, Malugin VI et al. Polygenic association of the reninangiotensinaldosterone system polymorphisms in essential arterial hypertension. Arterial’naya Gipertenziya = Arterial Hypertension. 2016;22(3):253–262. doi:10.18705/1607-419X‑2016-22-3-253-262. In Russian.
36. Lynch AI, Tang W, Shi G, Devereux RB, Eckfeldt JH, Arnett DK. Epistatic effects of ACE I/D and AGT gene variants on left ventricular mass in hypertensive patients: the HyperGEN study. J Hum Hypertens. 2012;26(2):133–140. doi:10.1038/jhh.2010.131
37. Park S, Lu KT, Liu X, Chatterjee TK, Rudich SM, Weintraub NL et al. Allele-specific expression of angiotensinogen in human subcutaneous adipose tissue. Hypertension. 2013;62(1):41– 47. doi:10.1161/HYPERTENSIONAHA.113.01330
Supplementary files
Review
For citations:
Timasheva Y.R., Gerasimova K.A., Tuktarova I.A., Erdman V.V., Nasibullin T.R. Polygenic analysis of genetic susceptibility to essential hypertension. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2022;28(1):33-45. (In Russ.) https://doi.org/10.18705/1607-419X-2022-28-1-33-45