Pulse wave velocity in children and adolescents with chronic kidney disease: a scoping review
https://doi.org/10.18705/1607-419X-2024-2428
EDN: LJYNVN
Abstract
Objective. The purpose of the study is to systematize published data to answer the main research question: how often is there an increase in pulse wave velocity (PWV) in children and adolescents with chronic kidney disease (CKD), compared with the control group (and/or reference values adopted in the study)? The study was carried out to show the relevance of further scientific research in this field. Design and methods. The search included PubMed database, the Cochrane Library, the scientific electronic library eLIBRARY.RU, the specialized Pediatric Nephrology journal, the Google Scholar system and the reference lists of relevant articles. Results. Of the 473 identified publications, 35 articles were included in the study. Significant differences were found in the methods for determining PWV (n = 4), devices (n = 9), implementation techniques, and reference values used (n = 4). The mean PWV Z-score in CKD patient groups ranged from –0,13 to 1,89. Among children and adolescents with CKD, the prevalence of PWV ≥ 95th percentile varied from 1% to 61% across studies. In most groups, an increase in PWV was detected in every fifth patient and more often. When compared with the group of healthy children, higher PWV values in patients with CKD were observed in half of the relevant studies (14/25; 56%). Most often, an increase in PWV was determined in children and adolescents with CKD G5 on dialysis therapy, in patients with hypertension, and after kidney transplantation. Conclusions. The majority of children and adolescents with CKD G5 on dialysis therapy have an increased PWV. For patients with CKD G1-G4, the conclusions are mixed, given the significant variability in the results of published studies. There is a need to standardize the measurement of PWV in children and adolescents, to achieve consensus decisions on assessing the results obtained, followed by the implementation of multicenter studies, including the Russian population.
About the Authors
E. N. KulakovaRussian Federation
Elena N. Kulakova, MD, PhD, Associate Professor, Department of Hospital Pediatrics
10 Studencheskaya str., Voronezh, 394036
I. V. Kondratjeva
Russian Federation
Inna V. Kondratjeva, MD, PhD, Associate Professor, Department of Hospital Pediatrics
10 Studencheskaya str., Voronezh, 394036
T. L. Nastausheva
Russian Federation
Tatjana L. Nastausheva, MD, PhD, DSc, Professor, Head, Department of Hospital Pediatrics
10 Studencheskaya str., Voronezh, 394036
References
1. Mensah GA, Fuster V, Murray CJL, Roth GA, Abate YH, Abbasian M et al. Global burden of cardiovascular diseases and risks, 1990–2022. J Am Coll Cardiol. 2023;82(25):2350–2473. doi:10.1016/j.jacc.2023.11.007
2. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2020; 396(10258):1204–1222. doi:10.1016/S0140-6736(20)30925-9
3. Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL et al. 2024 Heart disease and stroke statistics: a report of US and Global Data from the American Heart Association. Circulation. Published online January 24, 2024. doi:10.1161/CIR.0000000000001209
4. Zhou B, Carrillo-Larco RM, Danaei G, Riley LM, Paciorek CJ, Stevens GA et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. The Lancet. 2021;398(10304):957–980. doi:10.1016/S0140-6736(21)01330-1
5. Schipper HS, de FerrantiS.Cardiovascular risk assessment and management for pediatricians. Pediatrics. 2022; 150(6). doi:10.1542/peds.2022-057957
6. Flynn JT. What level of blood pressure is concerning in childhood? Circ Res. 2022;130(5):800–808. doi:10.1161/CIRCRESAHA.121.319819
7. Jacobs DR, Woo JG, Sinaiko AR, Daniels SR, Ikonen J, Juonala M et al. Childhood Cardiovascular risk factors and adult cardiovascular events. New Engl J Med. 2022;386(20):1877–1888. doi:10.1056/nejmoa2109191
8. Yang L, Magnussen CG, Yang L, Bovet P, XiB.Elevated blood pressure in childhood or adolescence and cardiovascular outcomes in adulthood: a systematic review. Hypertension. 2020;75(4):948–955. doi:10.1161/HYPERTENSIONAHA.119.14168
9. Querfeld U. Cardiovascular disease in childhood and adolescence: Lessons from children with chronic kidney disease. Acta Paediatrica, Int J Paediatrics. 2021;110(4):1125–1131. doi:10.1111/apa.15630
10. Pankratenko TE, Balashova NV, Mayorova EM, Abaseyeva TYu, Emirova KhM. Cardiovascular disease and endothelial dysfunction in children with chronic kidney disease. Klinicheskaya Nefrologiya. 2017;(2):22–27. March 20, 2024. Available from: https://elibrary.ru/item.asp?id=29425742. In Russian
11. The Union of Pediatricians of Russia, Creative Association of Pediatric Nephrologists, Russian Transplant Society. Clinical guidelines “Chronic kidney disease”. ICD10: N18.1, N18.2, N18.3, N18.4, N18.5, N18.9. Age category: Children; 2022. March 20, 2024. Available from: https://cr.minzdrav.gov.ru/recomend/713_1. In Russian.
12. Flynn JT, Ingelfinger JR, Tammy MB. Pediatric hypertension. Fifth Edition.; 2023. doi:10.1007/978-3-031-06231-5
13. Kulakova EN, Nastausheva TL. Problems in determining target blood pressure levels in children and adolescents with chronic kidney disease. Collection of Abstracts of the XXIV Congress of Pediatricians of Russia with International Participation “Current Problems of Pediatrics” 2023:109. March 20, 2024. Available from: https://pediatr-russia.ru/information/events/tezisi_2023.pdf. In Russian.
14. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3). doi:10.1542/PEDS.2017-1904/38358
15. Azukaitis K, Jankauskiene A, Schaefer F, Shroff R. Pathophysiology and consequences of arterial stiffness in children with chronic kidney disease. Pediatric Nephrology. 2021;36(7): 1683–1695. doi:10.1007/s00467-020-04732-y
16. Salvi P.Pulse Waves: How Vascular Hemodynamics Affects Blood Pressure.; 2017. doi:10.1007/978-3-319-40501-8
17. Boytsov SA, Pogosova NV, Ansheles AA, Badtieva VA, Balakhonova TV, Barbarash OL et al. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023;28(5):119–249. doi:10.15829/1560-4071-2023-5452. In Russian.
18. Laptev DN. Аrterial stiffness and cardiovascular autonomic neuropathy relationship in children and adolescents with type 1 diabetes mellitus. Diabetes mellitus. 2015;18(1):94–100. doi:10.14341/DM2015194-100. In Russian.
19. Galimova LF, Sadykova DI, Slastnikova ES, Marapov DI, Guseva NE, Haliullina ChD. Arterial stiffness in familial hypercholesterolemia: are there any risks in childhood? Pediatria n. a. G.N.Speransky. 2022; 101(2):44–49. doi:10.24110/0031-403X2022-101-2-44-49. In Russian.
20. Leontyeva IV, Kovalev IA, Shkolnikova MA, Isayeva YuS, Putintsev AN, Dudinskaya EN, et al. Early diagnosis of increased stiffness of great vessels in adolescents with functional pathology of vegetative genesis. Rossiyskiy Vestnik Perinatologii i Pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2021;66(3):52–61. doi:10.21508/1027-4065-2021-66-3-52-61. In Russian.
21. PoluninaDA, StrokovaTV, Bagaeva ME, Matinyan IA, Vasiluev PA, Semenova NA. Predictive markers of cardiovascular diseases in children with familial hypercholesterolemia. Voprosy dietologii = Nutrition. 2022; 12(3): 28–37. doi:10.20953/2224-5448-2022-3-28-37. In Russian.
22. Vlachopoulos C, Aznaouridis K, StefanadisC.Prediction of cardiovascular events and all-cause mortality with arterial stiffness. a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–1327. doi:10.1016/j.jacc.2009.10.061
23. Zhong Q, Hu MJ, Cui YJ, Liang L, Zhou MM, Yang YW et al. Carotid-femoral pulse wave velocity in the prediction of cardiovascular events and mortality: an updated systematic review and meta-analysis. Angiology. 2018;69(7):617–629. doi:10.1177/0003319717742544
24. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636–646. doi:10.1016/j.jacc.2013.09.063
25. Sequí-Domínguez I, Cavero-Redondo I, ÁlvarezBueno C, Pozuelo-Carrascosa DP, de Arenas-Arroyo SN, Martínez-VizcaínoV.Accuracy of pulse wave velocity predicting cardiovascular and all-cause mortality. A systematic review and meta-analysis. J Clin Med. 2020;9(7):1–13. doi:10.3390/jcm9072080
26. Kouis P, Kousios A, Kanari A, Kleopa D, Papatheodorou SI, Panayiotou AG. Association of non-invasive measures of subclinical atherosclerosis and arterial stiffness with mortality and major cardiovascular events in chronic kidney disease: systematic review and meta-analysis of cohort studies. Clin Kidney J. 2020;13(5):842–854. doi:10.1093/CKJ/SFZ095
27. Cecelja M, ChowienczykP.Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: Asystematic review. Hypertension. 2009;54(6):1328– 1336. doi:10.1161/HYPERTENSIONAHA.109.137653
28. Liu J, Wu J.The pathogenesis and impact of arterial stiffening in hypertension: The 2023 JohnH.Laragh research award. Am J Hypertens. Published online January 12, 2024. doi:10.1093/ajh/hpae006
29. Cecelja M, Keehn L, Ye L, Spector TD, Hughes AD, ChowienczykP.Genetic aetiology of blood pressure relates to aortic stiffness with bi-directional causality: Evidence from heritability, blood pressure polymorphisms, and Mendelian randomization. Eur HeartJ. 2020;41(35). doi:10.1093/eurheartj/ehaa238
30. Li Y, Haseler E, McNally R, Sinha MD, Chowienczyk PJ. Ameta-analysis of the haemodynamics of primary hypertension in children and adults. J Hypertens. 2023;41(2):212–219. doi:10.1097/HJH.0000000000003326
31. Chung J, Robinson CH, Yu A, Bamhraz AA, Ewusie JE, Sanger S et al. Risk of target organ damage in children with primary ambulatory hypertension: a systematic review and metaanalysis. Hypertension. 2023;80(6):1183–1196. doi:10.1161/HYPERTENSIONAHA.122.20190
32. Stoner L, Kucharska-Newton A, Meyer ML. Cardiometabolic health and carotid-femoral pulse wave velocity in children: a systematic review and meta-regression. J Pediatrics. 2020;218:98–105.e3. doi:10.1016/j.jpeds.2019.10.065
33. Cote AT, Phillips AA, Harris KC, Sandor GGS, Panagiotopoulos C, Devlin AM. Obesity and arterial stiffness in children: Systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2015;35(4):1038–1044. doi:10.1161/ATVBAHA.114.305062
34. Hudson LD, Rapala A, Khan T, Williams B, Viner RM. Evidence for contemporary arterial stiffening in obese children and adolescents using pulse wave velocity: a systematic review and meta-analysis. Atherosclerosis. 2015;241(2):376–386. doi:10.1016/j.atherosclerosis.2015.05.014
35. Vidi SR. Role of hypertension in progression of chronic kidney disease in children. Curr Opin Pediatr. 2018;30(2):247–251. doi:10.1097/MOP.0000000000000595
36. Shroff R.Reducing the burden of cardiovascular disease in children with chronic kidney disease: prevention vs. damage limitation. Pediatric Nephrology. 2021;36:2537–2544. doi:10.1007/s00467-021-05102-y/Published
37. Wilson AC, Flynn JT. Blood pressure in children with chronic kidney disease: lessons learned from the Chronic Kidney Disease in Children Cohort Study. Pediatric Nephrology. 2020;35:1203–1209. doi:10.1007/s00467-019-04288-6
38. Kulakova EN, Nastausheva TL, Kondratjeva IV. Scoping Review Methodology: History, Theory and Practice. Voprosy Sovremennoi Pediatrii = Current Pediatrics. 2021;20(3):210–222. doi: 10.15690/vsp.v20i3/2271. In Russian
39. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D et al. PRISMA extension for scoping reviews (PRISMAScR): Checklist and explanation. Ann Intern Med. 2018;169(7):467– 473. doi:10.7326/M18-0850
40. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension. 2015;66(3):698–722. doi:10.1161/HYP.0000000000000033/-/DC1
41. Vasyuk YuA, Ivanova SV, Shkolnik EL, Kotovskaya YuV, Milyagin VA, Oleynikov VE, et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Cardiovascular Therapy and Prevention. 2016;15(2):4–19. doi:10.15829/1728-8800-2016-2-4-19. In Russian.
42. Lurbe E, Agabiti-Rosei E, Cruickshank JK, Dominiczak A, Erdine S, Hirth A et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–1920. doi:10.1097/HJH.0000000000001039
43. Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56(2):217–224. doi:10.1161/HYPERTENSIONAHA.110.152686
44. Elmenhorst J, Hulpke-Wette M, Barta C, Dalla Pozza R, Springer S, OberhofferR.Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis. 2015;238(1):9–16. doi:10.1016/j.atherosclerosis.2014.11.005
45. Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD et al. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Res. 2012;14(1):41. doi:10.1186/1532-429X-14-77
46. Thurn D, Doyon A, Sözeri B, Bayazit AK, Canpolat N, Duzova A et al. Aortic pulse wave velocity in healthy children and adolescents: reference values for the Vicorder device and modifying factors. Am J Hypertens. 2015;28(12):1480–1488. doi:10.1093/ajh/hpv048
47. Briese S, Claus M, QuerfeldU.Arterial stiffness in children after renal transplantation. Pediatric Nephrol. 2008;23(12):2241– 2245. doi:10.1007/s00467-008-0894-y
48. Covic A, Mardare N, Gusbeth-Tatomir P, Brumaru O, Gavrilovici C, Munteanu M et al. Increased arterial stiffness in children on haemodialysis. Nephrol Dialys Transplant. 2006; 21(3):729–735. doi:10.1093/ndt/gfi196
49. Cseprekál O, Kis É, Schäffer P, Othmane TEH, Fekete morozova.ravilya@yandex.ru BC, Vannay Á et al. Pulse wave velocity in children following renal transplantation. Nephrol Dialys Transplant. 2009;24(1):309–315. doi:10.1093/ndt/gfn494
50. Kis É, Cseprekál O, Bíró E, Kelen K, Ferenczi D, Kerti A, et al. Effects of bone and mineral metabolism on arterial elasticity in chronic renal failure. Pediatric Nephrol. 2009;24(12):2413–2420. doi:10.1007/s00467-009-1292-9
51. Shroff RC, Donald AE, Hiorns MP, Watson A, Feather S, Milford D et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol. 2007;18(11):2996–3003. doi:10.1681/ASN.2006121397
52. Dursun I, Poyrazoglu HM, Gunduz Z, Ulger H, Yýkýlmaz A, Dusunsel R et al. The relationship between circulating endothelial microparticles and arterial stiffness and atherosclerosis in children with chronic kidney disease. Nephrol Dialys Transplant. 2009;24(8):2511–2518. doi:10.1093/ndt/gfp066
53. Alghamdi M, De Souza AM, White CT, Potts MT, Warady BA, Furth SL et al. Echo-doppler assessment of the biophysical properties of the aorta in children with chronic kidney disease. Pediatr Cardiol. 2013;34(5):1218–1225. doi:10.1007/s00246-013-0632-5
54. Candan C, Canpolat N, Gökalp S, Yildiz N, Turhan P, Taşdemir M et al. Subclinical cardiovascular disease and its association with risk factors in children with steroid-resistant nephrotic syndrome. Pediatric Nephrol. 2014;29(1):95–102. doi:10.1007/s00467-013-2608-3
55. Cseprekál O, Kis E, Dégi AA, Kerti A, Szabó AJ, Reusz GS. Bone metabolism and arterial stiffness after renal transplantation. Kidney Blood Press Res. 2014;39(6):507–515. doi:10.1159/000368461
56. Makulska I, Szczepańska M, Drozdz D, Polak-Jonkisz D, ZwolińskaD.Skin autofluorescence as a marker of cardiovascular risk in children with chronic kidney disease. Pediatric Nephrol. 2013;28(1):121–128. doi:10.1007/s00467-012-2280-z
57. Sinha MD, Keehn L, Milne L, Sofocleous P, Chowienczyk PJ. Decreased arterial elasticity in children with nondialysis chronic kidney disease is related to blood pressure and not to glomerular filtration rate. Hypertension. 2015;66(4):809–815. doi:10.1161/HYPERTENSIONAHA.115.05516
58. Tawadrous H, Kamran H, Salciccioli L, Schoeneman MJ, LazarJ.Evaluation of arterial structure and function in pediatric patients with end-stage renal disease on dialysis and after renal transplantation. Pediatr Transplant. 2012;16(5):480–485. doi:10.1111/j.1399-3046.2012.01721.x
59. Borchert-Mörlins B, Thurn D, Schmidt BMW, Büscher AK, Oh J, Kier T et al. Factors associated with cardiovascular target organ damage in children after renal transplantation. Pediatric Nephrol. 2017;32(11):2143–2154. doi:10.1007/s00467-017-3771-8
60. Karava V, Benzouid C, Hogan J, Dossier C, Denjean AP, DeschênesG.Early cardiovascular manifestations in children and adolescents with autosomal dominant polycystic kidney disease: a single center study. Pediatric Nephrol. 2018;33(9):1513–1521. doi:10.1007/s00467-018-3964-9
61. Karava V, Benzouid C, Kwon T, Macher MA, Deschênes G, Hogan J.Interdialytic weight gain and vasculopathy in children on hemodialysis: a single center study. Pediatric Nephrol. 2018;33(12):2329–2336. doi:10.1007/s00467-018-4026-z
62. Karava V, Printza N, Dotis J, Demertzi D, Antza C, Kotsis V et al. Body composition and arterial stiffness in pediatric patients with chronic kidney disease. Pediatric Nephrol. Published online 2019. doi:10.1007/s00467-019-04224-8
63. Marlais M, Rajalingam S, Gu H, Savis A, Sinha MD, Winyard PJ. Central blood pressure and measures of early vascular disease in children with ADPKD. Pediatric Nephrol. 2019;34:1791– 1797. doi:10.1007/s00467-019-04287-7/Published
64. Savant JD, Betoko A, Meyers KEC, Mitsnefes M, Flynn JT, Townsend RR et al. Vascular stiffness in children with chronic kidney disease. Hypertension. 2017;69(5):863–869. doi:10.1161/HYPERTENSIONAHA.116.07653
65. Schaefer F, Doyon A, Azukaitis K, Bayazit A, Canpolat N, Duzova A et al. Cardiovascular phenotypes in children with CKD: The 4C study. Clin J Am Soc Nephrol. 2017;12(1):19–28. doi:10.2215/CJN.01090216
66. Shah S, Swartz S, Campbell J, Srivaths PR. Ambulatory blood pressures and central blood pressures are associated with cardiovascular morbidity in adolescent and young adult patients receiving chronic hemodialysis. Pediatric Nephrol. 2019;34(7):1261–1268. doi:10.1007/s00467-019-04208-8
67. Skrzypczyk P, Okarska-Napierała M, Stelmaszczyk-Emmel A, Górska E, Pańczyk-TomaszewskaM.Renalase in children with chronic kidney disease. Biomarkers. 2019;24(7):638–644. doi:10.1080/1354750X.2019.1642957
68. Skrzypczyk P, Przychodzień J, Mizerska-Wasiak M, Kuźma-Mroczkowska E, Stelmaszczyk-Emmel A, Górska E, et al. Asymmetric dimethylarginine is not a marker of arterial damage in children with glomerular kidney diseases. Central Eur J Immunol. 2019;44(4):370–379. doi:10.5114/ceji.2019.92788
69. Stabouli S, KotsisV, Maliachova O, Printza N, Chainoglou A, Christoforidis A, et al. Matrix metalloproteinase –2, –9 and arterial stiffness in children and adolescents: The role of chronic kidney disease, diabetes, and hypertension. Int J Cardiol Hypertens. 2020;4. doi:10.1016/j.ijchy.2020.100025
70. Taşdemir M, Eroğlu AG, Canpolat N, Konukoğlu D, Ağbaş A, Sevim MD, et al. Cardiovascular alterations do exist in children with stage2 chronic kidney disease. Clin Exp Nephrol. 2016;20(6):926–933. doi:10.1007/s10157-016-1234-3
71. Düzova A, Karabay Bayazit A, Canpolat N, Niemirska A, Kaplan Bulut I, Azukaitis K et al. Isolated nocturnal and isolated daytime hypertension associate with altered cardiovascular morphology and function in children with chronic kidney disease: Findings from the Cardiovascular Comorbidity in Children with Chronic Kidney Disease study. J Hypertens. 2019;37(11):2247– 2255. doi:10.1097/HJH.0000000000002160
72. Ozdemir K, Yilmaz E, Dincel N, Bozabali S, Apaydin S, Gun ZH et al. Association of clearance of middle- and largemolecular-weight substance with arterial stiffness and left ventricular mass in children receiving renal replacement therapy. Minerva Pediatr. 2017;69(6):495–502. doi:10.23736/S0026-4946.16.04253-5
73. Alves C, Pinho JF, dos Santos LM, Magalhães G, da Silva JM, Fontes FL et al. Augmentation index, a predictor of cardiovascular events, is increased in children and adolescents with primary nephrotic syndrome. Pediatric Nephrol. 2020;35(5):815– 827. doi:10.1007/s00467-019-04434-0
74. Bárczi A, Lakatos BK, Szilágyi M, Kis É, Cseprekál O, Fábián A, et al. Subclinical cardiac dysfunction in pediatric kidney transplant recipients identified by speckle-tracking echocardiography. Pediatric Nephrol. Published online 2022. doi:10.1007/s00467-022-05422-7
75. Brecheret AP, Abreu ALCS, Lopes R, Fonseca FAH, Solé D, Andrade MC de. Evaluation of pulse wave velocity and central systolic blood pressure in children and adolescents with chronic kidney disease. Einstein (Sao Paulo). 2022;20:eAO6758. doi:10.31744/einstein_journal/2022AO6758
76. Filip C, Cirstoveanu C, Bizubac M, Berghea EC, Căpitănescu A, Bălgrădean M et al. Pulse (ESRD). Diagnostics. 2022;12(1). doi:10.3390/diagnostics12010071
77. Kohlmeier L, von der Born J, Lehmann E, Fröde K, Grabitz C, Greiner AS et al. Physical activity and its impact on cardiovascular health in pediatric kidney transplant recipients. Pediatric Nephrol. Published online 2023. doi:10.1007/s00467-023-06248-7
78. Lalayiannis AD, Ferro CJ, Wheeler DC, Duncan ND, Smith C, Popoola J, et al. The burden of subclinical cardiovascular disease in children and young adults with chronic kidney disease and on dialysis. Clin KidneyJ. 2022;15(2):287–294. doi:10.1093/ckj/sfab168
79. Močnik M, Golob Jančič S, Marčun VardaN.Liver and kidney ultrasound elastography in children and young adults with hypertension or chronic kidney disease. Pediatric Nephrol. 2023;38(10):3379–3387. doi:10.1007/s00467-023-05984-0
80. Sugianto RI, Memaran N, Schmidt BMW, Doyon A, ThurnValsassina D, Alpay H et al. Findings from 4C-T Study demonstrate an increased cardiovascular burden in girls with end stage kidney disease and kidney transplantation. Kidney Int. 2022;101(3):585– 596. doi:10.1016/j.kint.2021.11.032
81. Tunçay S, Doğan E, Hakverdi G, Tutar Z, MirS.Interleukin8 is increased in chronic kidney disease in children, but not related to cardiovascular disease. Braz J Nephrol. 2021;43(3):359– 364. doi: 10.1590/2175-8239-JBN-2020-0225
82. Park JB, Sharman JE, Li Y, Munakata M, Shirai K, Chen CH et al. Expert consensus on the clinical use of pulse wave velocity in Asia. Pulse. 2022;10(1–4):1–18. doi:10.1159/000528208
83. Spronck B, Terentes-Printzios D, Avolio AP, Boutouyrie P, Guala A, Jerončić A et al. 2024 Recommendations for validation of noninvasive arterial pulse wave velocity measurement devices. Hypertension. 2024;81(1):183–192. doi:10.1161/HYPERTENSIONAHA.123.21618
84. Lu Y, Kiechl SJ, Wang J, Xu Q, Kiechl S, Pechlaner R et al. Global distributions of age- and sex-related arterial stiffness: systematic review and meta-analysis of 167 studies with 509,743 participants. EBioMedicine. 2023;92. doi:10.1016/j.ebiom.2023.104619
85. The all-Russian non-governmental organization “Russian Society of Cardiology”. Clinical guidelines “Arterial Hypertension in Adults”. ICD10: I10, I11, I12, I13, I15; 2020. March 20, 2024. Available from: https://cr.minzdrav.gov.ru/schema/62_2 In Russian].
86. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6):1334– 1357. doi:10.1161/HYPERTENSIONAHA.120.15026
87. Mancia G, Kreutz R, Brunström M, Burnier M, Grassi G, Januszewicz A et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension. J Hypertens. 2023;41(12). doi:10.1097/hjh.0000000000003480
88. Aleksandrov AA, Kisliak OA, Leontyeva IV. Clinical guidelines on arterial hypertension diagnosis, treatment and prevention in children and adolescents. Systemic Hypertension. 2020;17(2):7–35. doi:10. 26442/2075082X.2020.2.200126. In Russian].
89. Cheung AK, Chang TI, Cushman WC, Furth SL, Hou FF, Ix JH, et al. KDIGO 2021 Clinical Practice Guideline for the management of blood pressure in chronic kidney disease. Kidney Int. 2021;99(3): S1–S87. doi:10.1016/J.KINT.2020.11.003/ATTACHMENT/F431878B-95B5-4839-B871-E9587652AE0A/MMC1.PDF
90. Nephrology association. Clinical guidelines “Chronic kidney disease (CKD)”. ICD10: N8.1, N8.2, N8.3, N8.4, N8.5, N8.9. Age category: Adults; 2021. March 20, 2024. Available from: https://cr.minzdrav.gov.ru/recomend/469_2. In Russian].
91. Industrial design patent No. 129824 Russian Federation. System for volumetric sphygmography BPLab angio. No. 2021504511. application. 08.09.2021. publ. 15.03.2022. PV Telegin; applicant Limited Liability Company “Petr Telegin”. March 20, 2024. Available from: https://elibrary.ru/item.asp?id=48139822. In Russian.
Supplementary files
Review
For citations:
Kulakova E.N., Kondratjeva I.V., Nastausheva T.L. Pulse wave velocity in children and adolescents with chronic kidney disease: a scoping review. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2024;30(5):418-440. (In Russ.) https://doi.org/10.18705/1607-419X-2024-2428. EDN: LJYNVN