Microbiome and atherosclerosis: state of the problem
https://doi.org/10.18705/1607-419X-2024-2443
EDN: UIUCDO
Abstract
Objective. To study modern ideas about the influence of the intestinal microbiome, oral cavity and atherosclerotic plaque on the development and progression of atherosclerosis (AS). Design and methods. The literature review was carried out by analyzing scientific publications in PubMed, meta-analyses, randomized clinical trials, as well as guidelines and review articles within the period from 1997 to 2024. This review examines modern ideas about the above-mentioned non-traditional risk factors (RF) for AS. Conclusions. AS is a disease with a multifactorial pathogenesis. Understanding the role of both classical and non-classical RF in the development of atherosclerotic vascular disease is important for the development of effective preventive and therapeutic measures. Among the non-classical RF for AS is the role of the intestinal and oral microbiome. The fundamental mechanisms of the influence of the microbiota of the oral cavity and intestines on the development of AS include the following: the direct damaging effect of lipopolysaccharides and bacterial toxins on the vascular wall, the influence of microbial metabolites and increased permeability of the intestinal wall on the translocation of bacterial toxins into the systemic bloodstream, as well as the development of chronic lowlevel systemic inflammation and endothelial dysfunction. This review examines modern ideas about the abovedescribed non-traditional RF for AS.
Keywords
About the Authors
E. V. VerkhovskayaRussian Federation
Ekaterina V. Verkhovskaya, Student, Institute of Medical Education
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
E. P. Kolesova
Russian Federation
Ekaterina P. Kolesova, MD, PhD, Leading Researcher, Research Institute of Population Genetics of World-Class Research Centre for Personalized Medicine “Center for Personalized Medicine”, Researcher, Institute of Epidemiology of Noncommunicable Disease
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
A. G. Vanyurkin
Russian Federation
Almaz G. Vanyurkin, MD, Junior Researcher, Research Institute of Vascular and Interventional Surgery, Cardiovascular Surgeon
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
E. K. Zaikova
Russian Federation
Ekaterina K. Zaikova, MD, Junior Researcher, Research Institute of Autoimmune and Autoinflammatory Diseases of World-Class Research Centre for Personalized Medicine “Center for Personalized Medicine”
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
O. V. Kalinina
Russian Federation
Olga V. Kalinina, Doctor of Biological Sciences, Professor, Department of Laboratory Medicine and Genetics, Leading Researcher, Research Institute of Autoimmune and Autoinflammatory Diseases of World-Class Research Centre for Personalized Medicine “Center for Personalized Medicine”
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
M. A. Chernyavsky
Russian Federation
Mikhail A. Chernyavsky, MD, PhD, DSc, Head, Research Institute of Vascular and Interventional Surgery, Cardiovascular Surgeon, Associate Professor, Department of Specialized Surgery with the Clinic
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
A. L. Maslyanskiy
Russian Federation
Alexey L. Maslyanskiy, MD, PhD, DSc, Head, Scientific Laboratory of Rheumatology and Immunopathology
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
A. N. Yakovlev
Russian Federation
Alexei N. Yakovlev, MD, PhD, Head, Research Laboratory of Technologies for Predicting the Risk of Cardiovascular Complications of World-Class Research Centre for Personalized Medicine “Center for Personalized Medicine”, Head, Acute Coronary Syndrome Research Laboratory, Associate Professor, Anesthesiology and Intensive Care Chair
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
A. Yu. Babenko
Russian Federation
Alina Yu. Babenko, MD, PhD, DSc, Head, Research Department of Genetic Risks and Personalized Prevention, Head, Research Laboratory of Prediabetes and Metabolic Disorders of World-Class Research Centre for Personalized Medicine “Center for Personalized Medicine”, Head, Research Laboratory of Diabetology, Professor, Department of Internal Diseases
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
A. O. Konradi
Russian Federation
Aleksandra O. Konradi, MD, PhD, DSc, Professor, Academician of the Russian Academy of Sciences, Deputy Director General for Scientific Work, Head, Department of Organization, Management and Economics of Healthcare, Faculty of Postgraduate and Additional Education, Institute of Medical Education
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
E. V. Shlyakhto
Russian Federation
Evgeny V. Shlyakhto, MD, PhD, DSc, Professor, Academician RAS, Director General
2 Akkuratov str., St Petersburg, 197341
Phone: 8 (812) 702–37–56
References
1. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018 Nov 10;392(10159):1736-1788. doi: 10.1016/S0140-6736(18)32203-7.
2. Baranov E.F., Bezborodova T.S., Bobylev S.N. Russian Statistical Yearbook 2021: Stat.book/Rosstat – R76 М., 2021 – 692 p. In Russian.
3. Boytsov S.A., Pogosova N.V., Ansheles A.A. et al. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023;28(5):5452. In Russian]. doi.org/10.15829/1560-4071-2023-5452.
4. Ramji DP. Atherosclerosis: methods and protocols, methods in molecular biology // Humana Press. 2022. Vol. 2419. P. 3. https://doi.org/10.1007/978-1-0716-1924-7_1.
5. Cimmino G, Muscoli S, De Rosa S et al. Pathogenesis of Atherosclerosis Working Group of The Italian Society of Cardiology. Evolving concepts in the pathophysiology of atherosclerosis: from endothelial dysfunction to thrombus formation through multiple shades of inflammation. J Cardiovasc Med (Hagerstown). 2023 May 1;24(Suppl 2): e156-e167. doi: 10.2459/JCM.0000000000001450.
6. Ezhov M. V., Kukharchuk V. V., Sergienko I. V. et al. Disorders of lipid metabolism. Clinical Guidelines 2023. Russian Journal of Cardiology. 2023;28(5):5471. In Russian. doi:10.15829/1560-4071-2023-5471.
7. Chernyavsky M.A., Irtyuga O.B., Yanishevsky S.N. et al. Russian consensus statement on the diagnosis and treatment of patients with carotid stenosis. Russian Journal of Cardiology. 2022;27(11):5284. In Russian. doi:10.15829/1560- 4071-2022-5284.
8. Susanin N.V., Chernyavsky M.A., Vanyurkin A.G. et al. Hybrid revascularization of chronic occlusion of the aorto-femoral segment in a patient with critical ischemia of the lower limbs and ischemic heart disease. Translational Medicine. 2022;9(3):5-12. In Russian. doi: 10.18705/2311-4495-2022-9-3-5-12.
9. Chernyavsky M.A., Artemova A.S., Susanin N.V. et al. Hybrid revascularization for multi-level lession of lower limb arteries in a young patient. 2021;8(3):291-295. In Russian. doi: 10.24183/2409-4080-2021-8-3-291-295.
10. Kassebaum NJ, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990-2010: a systematic review and meta-regression. J Dent Res. 2014 Nov;93(11):1045-53. doi: 10.1177/0022034514552491.
11. Sanz M, Marco Del Castillo A, Jepsen S et al. Periodontitis and cardiovascular diseases: Consensus report. J Clin Periodontol. 2020 Mar;47(3):268-288. doi: 10.1111/jcpe.13189.
12. Dietrich T, Sharma P, Walter C et al. The epidemiological evidence behind the association between periodontitis and incident atherosclerotic cardiovascular disease. J Clin Periodontol. 2013 Apr;40 Suppl 14: S70-84. doi: 10.1111/jcpe.12062. Erratum in: J Clin Periodontol. 2013 Apr;40 Suppl 14: S210-5.
13. Koren O, Spor A, Felin J et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1(Suppl 1):4592-8. doi: 10.1073/pnas.1011383107.
14. Rath SK, Mukherjee M, Kaushik R et al. Periodontal pathogens in atheromatous plaque. Indian J Pathol Microbiol. 2014 Apr-Jun;57(2):259-64. doi: 10.4103/0377-4929.134704.
15. Mahendra J, Mahendra L, Felix J et al. Genetic analysis of Porphyromonas gingivalis (fimA), Aggregatibacter actinomycetemcomitans, and red complex in coronary plaque. J Investig Clin Dent. 2014 Aug;5(3):201-7. doi: 10.1111/jicd.12030.
16. de Boer SP, Cheng JM, Rangé H et al. Antibodies to periodontal pathogens are associated with coronary plaque remodeling but not with vulnerability or burden. Atherosclerosis. 2014 Nov;237(1):84-91. doi: 10.1016/j.atherosclerosis.2014.08.050.
17. Aimetti M, Romano F, Nessi F. Microbiologic analysis of periodontal pockets and carotid atheromatous plaques in advanced chronic periodontitis patients. J Periodontol. 2007 Sep;78(9):1718-23. doi: 10.1902/jop.2007.060473.
18. Rao A, Lokesh J, D'Souza C et al. Metagenomic Analysis to Uncover the Subgingival and Atherosclerotic Plaque Microbiota in Patients with Coronary Artery Disease. Indian J Microbiol. 2023 Sep;63(3):281-290. doi: 10.1007/s12088-023-01082-9.
19. Jie Z, Xia H, Zhong SL et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017 Oct 10;8(1):845. doi: 10.1038/s41467-017-00900-1.
20. Cui L, Zhao T, Hu H et al. Association Study of Gut Flora in Coronary Heart Disease through High-Throughput Sequencing. Biomed Res Int. 2017; 2017:3796359. doi: 10.1155/2017/3796359.
21. Ji L, Chen S, Gu G et al. Exploration of Crucial Mediators for Carotid Atherosclerosis Pathogenesis Through Integration of Microbiome, Metabolome, and Transcriptome. Front Physiol. 2021 May 24; 12:645212. doi: 10.3389/fphys.2021.645212.
22. Chen J, Qin Q, Yan S et al. Gut Microbiome Alterations in Patients with Carotid Atherosclerosis. Front Cardiovasc Med. 2021 Nov 19; 8:739093. doi: 10.3389/fcvm.2021.739093.
23. Szabo H, Hernyes A, Piroska M et al. Association between Gut Microbial Diversity and Carotid Intima-Media Thickness. Medicina (Kaunas). 2021 Feb 25;57(3):195. doi: 10.3390/medicina57030195.
24. Zhu S, Xu K, Jiang Y et al. The gut microbiome in subclinical atherosclerosis: a population-based multiphenotype analysis. Rheumatology (Oxford). 2021 Dec 24;61(1):258-269. doi: 10.1093/rheumatology/keab309.
25. Liu H, Chen X, Hu X et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome. 2019 Apr 26;7(1):68. doi: 10.1186/s40168-019-0683-9.
26. Chen XF, Chen X, Tang X. Short-chain fatty acid, acylation and cardiovascular diseases. Clin Sci (Lond). 2020 Mar 27;134(6):657-676. doi: 10.1042/CS20200128.
27. Kazemian N, Mahmoudi M, Halperin F et al. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020 Mar 14;8(1):36. doi: 10.1186/s40168-020-00821-0.
28. Sekimoto H, Shimada O, Makanishi M et al. Interrelationship between serum and fecal sterols. Jpn J Med. 1983 Jan;22(1):14-20. doi: 10.2169/internalmedicine1962.22.14.
29. Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS. 2020 May;128(5):353-366. doi: 10.1111/apm.13038.
30. Loffredo L, Ivanov V, Ciobanu N et al. Is There an Association Between Atherosclerotic Burden, Oxidative Stress, and Gut-Derived Lipopolysaccharides? Antioxid Redox Signal. 2020 May 18. doi: 10.1089/ars.2020.8109.
31. Bennett BJ, de Aguiar Vallim TQ, Wang Z et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013 Jan 8;17(1):49-60. doi: 10.1016/j.cmet.2012.12.011.
32. Schiattarella GG, Sannino A, Toscano E et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017 Oct 14;38(39):2948-2956. doi: 10.1093/eurheartj/ehx342.
33. Wang Z, Klipfell E, Bennett BJ et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr 7;472(7341):57-63. doi: 10.1038/nature09922.
34. Heianza Y, Ma W, DiDonato JA et al. Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk. J Am Coll Cardiol. 2020 Feb 25;75(7):763-772. doi: 10.1016/j.jacc.2019.11.060.
35. Nemet I, Saha PP, Gupta N et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell. 2020 Mar 5;180(5):862-877.e22. doi: 10.1016/j.cell.2020.02.016.
36. Yu F, Li X, Feng X et al. Phenylacetylglutamine, a Novel Biomarker in Acute Ischemic Stroke. Front Cardiovasc Med. 2021 Dec 23; 8:798765. doi: 10.3389/fcvm.2021.798765.
37. Qi S, Luo X, Liu S et al. The Critical Effect of Bile Acids in Atherosclerosis. J Cardiovasc Pharmacol. 2022 Oct 1;80(4):562-573. doi: 10.1097/FJC.0000000000001320.
38. Cason CA, Dolan KT, Sharma G et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J Vasc Surg. 2018 Nov;68(5):1552-1562.e7. doi: 10.1016/j.jvs.2017.09.029.
39. Xue H, Chen X, Yu C et al. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease. Circ Res. 2022 Aug 19;131(5):404-420. doi: 10.1161/CIRCRESAHA.122.321253.
40. Balasubramanian R, Paynter NP, Giulianini F et al. Metabolomic profiles associated with all-cause mortality in the Women's Health Initiative. Int J Epidemiol. 2020 Feb 1;49(1):289-300. doi: 10.1093/ije/dyz211.
41. Duttaroy AK. Role of Gut Microbiota and Their Metabolites on Atherosclerosis, Hypertension and Human Blood Platelet Function: A Review. Nutrients. 2021 Jan 3;13(1):144. doi: 10.3390/nu13010144.
42. Wang Z, Tang WH, Buffa JA et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014 Apr;35(14):904-10. doi: 10.1093/eurheartj/ehu002.
43. Chen WY, Wang M, Zhang J et al. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability. Am J Pathol. 2017 Dec;187(12):2686-2697. doi: 10.1016/j.ajpath.2017.08.015.
44. Wang W, Uzzau S, Goldblum SE et al. Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci. 2000 Dec;113 Pt 24:4435-40. doi: 10.1242/jcs.113.24.4435.
45. Zhang D, Zhang L, Zheng Y et al. Circulating zonulin levels in newly diagnosed Chinese type 2 diabetes patients. Diabetes Res Clin Pract. 2014 Nov;106(2):312-8. doi: 10.1016/j.diabres.2014.08.017.
46. Zhang D, Zhang L, Yue F et al. Serum zonulin is elevated in women with polycystic ovary syndrome and correlates with insulin resistance and severity of anovulation. Eur J Endocrinol. 2015 Jan;172(1):29-36. doi: 10.1530/EJE-14-0589.
47. Moreno-Navarrete JM, Sabater M, Ortega F et al. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One. 2012;7(5): e37160. doi: 10.1371/journal.pone.0037160.
48. Li C, Gao M, Zhang W et al. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease. Sci Rep. 2016 Jun 29; 6:29142. doi: 10.1038/srep29142.
49. Carrera-Bastos P, Picazo Ó, Fontes-Villalba M et al. Serum Zonulin and Endotoxin Levels in Exceptional Longevity versus Precocious Myocardial Infarction. Aging Dis. 2018 Apr 1;9(2):317-321. doi: 10.14336/AD.2017.0630.
50. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003 Feb;3(2):169-76. doi: 10.1038/nri1004.
51. Nesci A, Carnuccio C, Ruggieri V et al. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int J Mol Sci. 2023 May 22;24(10):9087. doi: 10.3390/ijms24109087.
52. Jonsson MK, Sundlisæter NP, Nordal HH et al. Calprotectin as a marker of inflammation in patients with early rheumatoid arthritis. Ann Rheum Dis. 2017 Dec;76(12):2031-2037. doi: 10.1136/annrheumdis-2017-211695.
53. Sakuma M, Tanaka A, Kotooka N et al. Myeloid-related protein-8/14 in acute coronary syndrome. Int J Cardiol. 2017 Dec 15; 249:25-31. doi: 10.1016/j.ijcard.2017.09.020.
54. Saenz-Pipaon G, San Martín P, Planell N et al. Functional and transcriptomic analysis of extracellular vesicles identifies calprotectin as a new prognostic marker in peripheral arterial disease (PAD). J Extracell Vesicles. 2020 Feb 19;9(1):1729646. doi: 10.1080/20013078.2020.1729646.
55. Marta-Enguita J, Navarro-Oviedo M, Rubio-Baines I et al. Association of calprotectin with other inflammatory parameters in the prediction of mortality for ischemic stroke. J Neuroinflammation. 2021 Jan 5;18(1):3. doi: 10.1186/s12974-020-02047-1.
56. Chatzopoulos A, Tzani AI, Doulamis IP et al. Dynamic changes in calprotectin and its correlation with traditional markers of oxidative stress in patients with acute ischemic stroke. Hellenic J Cardiol. 2017 Nov-Dec;58(6):456-458. doi: 10.1016/j.hjc.2017.07.002.
57. Kolesova E.P., Usoltsev D.A., Moguchaya E.V. et al. Association of fecal zonulin and calprotectin levels with cardiovascular risk factors and target organ damage in a sample of patients with metabolic disorders. Russian Journal of Cardiology. 2023;28(11):5569. In Russian. doi:10.15829/1560-4071-2023-5569.
58. Masljanskiy AL, Penin IN, Cheshuina MD et al. General patterns of cytokines and chemokines production in patients with chronic inflammatory diseases, inflammatory arthropathy and atherosclerosis. Cytokines and Inflammation 2014; 13, 3: 9-21. In Russian.
59. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med. 2005 Apr 21;352(16):1685-95. doi: 10.1056/NEJMra043430.
60. Armingohar Z, Jørgensen JJ, Kristoffersen AK et al. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. J Oral Microbiol. 2014 May 15;6. doi: 10.3402/jom. v6.23408.
61. Li C, Gao M, Zhang W et al. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease. Sci Rep. 2016 Jun 29; 6:29142. doi: 10.1038/srep29142.
62. Lv H, Zhang Z, Fu B et al. Characteristics of the gut microbiota of patients with symptomatic carotid atherosclerotic plaques positive for bacterial genetic material. Front Cell Infect Microbiol. 2024 Jan 12; 13:1296554. doi: 10.3389/fcimb.2023.1296554.
63. Roth GA, Mensah GA, Johnson CO et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 2020 Dec 22;76(25):2982-3021. doi: 10.1016/j.jacc.2020.11.010. Erratum in: J Am Coll Cardiol. 2021 Apr 20;77(15):1958-1959.
64. Ott SJ, El Mokhtari NE, Musfeldt M et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation. 2006 Feb 21;113(7):929-37. doi: 10.1161/CIRCULATIONAHA.105.579979.
65. Tan J, McKenzie C, Potamitis M et al. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014; 121:91-119. doi: 10.1016/B978-0-12-800100-4.00003-9.
66. Ghosh SS, Wang J, Yannie PJ et al. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc. 2020 Feb 20;4(2): bvz039. doi: 10.1210/jendso/bvz039.
67. Brandsma E, Kloosterhuis NJ, Koster M et al. A Proinflammatory Gut Microbiota Increases Systemic Inflammation and Accelerates Atherosclerosis. Circ Res. 2019 Jan 4;124(1):94-100. doi: 10.1161/CIRCRESAHA.118.313234.
68. Figuero E, Lindahl C, Marín MJ et al. Quantification of periodontal pathogens in vascular, blood, and subgin-gival samples from patients with peripheral arterial disease or abdominal aortic aneurysms. J Periodontol. 2014 Sep;85(9):1182-93. doi: 10.1902/jop.2014.130604.
69. Szulc M, Kustrzycki W, Janczak D et al. Presence of Periodontopathic Bacteria DNA in Atheromatous Plaques from Coronary and Carotid Arteries. Biomed Res Int. 2015; 2015:825397. doi: 10.1155/2015/825397.
70. Brun A, Nuzzo A, Prouvost B et al. Oral microbiota and atherothrombotic carotid plaque vulnerability in periodontitis patients. A cross-sectional study. J Periodontal Res. 2021 Apr;56(2):339-350. doi: 10.1111/jre.12826.
71. Romano F, Barbui A, Aimetti M. Periodontal pathogens in periodontal pockets and in carotid atheromatous plaques. Minerva Stomatol. 2007 Apr;56(4):169-79. English, Italian.
72. Cairo F, Gaeta C, Dorigo W et al. Periodontal pathogens in atheromatous plaques. A controlled clinical and laboratory trial. J Periodontal Res. 2004 Dec;39(6):442-6. doi: 10.1111/j.1600-0765.2004.00761.
73. Zhu Q, Gao R, Zhang Y et al. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics. 2018 Oct 1;50(10):893-903. doi: 10.1152/physiolgenomics.00070.2018.
74. Alhmoud T, Kumar A, Lo CC et al. Investigating intestinal permeability and gut microbiota roles in acute coronary syndrome patients. Hum Microb J. 2019 Aug; 13:100059. doi: 10.1016/j.humic.2019.100059.
75. Yoshida N, Emoto T, Yamashita T et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation. 2018 Nov 27;138(22):2486-2498. doi: 10.1161/CIRCULATIONAHA.118.033714.
Supplementary files
Review
For citations:
Verkhovskaya E.V., Kolesova E.P., Vanyurkin A.G., Zaikova E.K., Kalinina O.V., Chernyavsky M.A., Maslyanskiy A.L., Yakovlev A.N., Babenko A.Yu., Konradi A.O., Shlyakhto E.V. Microbiome and atherosclerosis: state of the problem. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2024;30(5):451-466. (In Russ.) https://doi.org/10.18705/1607-419X-2024-2443. EDN: UIUCDO