Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

Vascular aging: the role of hypertension, obesity and meta-inflammation

https://doi.org/10.18705/1607-419X-2024-2474

EDN: XOHWRU

Abstract

Cardiovascular diseases are the main cause of disability and mortality in the elderly population in developed countries. At the same time, population-based studies have shown that aging remains the most significant risk factor for cardiovascular pathology. Existing geroprotection strategies have not shown high efficiency. At the same time, the mechanisms of the negative impact of known risk factors (such as hypertension, obesity, metabolic disorders) are largely identical to the processes of cardiovascular aging.
Pathophysiological processes associated with aging include oxidative stress and mitochondrial dysfunction, impaired autophagy and increased apoptosis, telomere dysfunction, meta-inflammation and fibrosis. They are interconnected and are potentiated by the presence of hypertension and obesity, aggravating cardiovascular aging and provoking atherogenesis.
Understanding the key common links in the pathogenesis of these processes will help determine the direction of developing more effective strategies for geroprotection and prevention of cardiovascular pathology.

About the Authors

I. V. Zyubanova
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Irina V. Zyubanova, MD, PhD, Researcher, Hypertension Department

111a Kievskaya str., Tomsk, 634012



V. F. Mordovin
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Victor F. Mordovin, MD, PhD, DSc, Professor, Leading Researcher, Hypertension Department

111a Kievskaya str., Tomsk, 634012



V. A. Lichikaki
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Valeriya A. Lichikaki, MD, PhD, Researcher, Hypertension Department

111a Kievskaya str., Tomsk, 634012



M. A. Manukyan
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Musheg A. Manukyan, MD, Junior Researcher, Hypertension Department

111a Kievskaya str., Tomsk, 634012



S.. A. Khunkhinova
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Simzhit A. Khunkhinova, Clinical Research Laboratory Assistant, Hypertension Department

111a Kievskaya str., Tomsk, 634012



E. I. Solonskaya
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Ekaterina I. Solonskaya, MD, PhD, Junior Researcher, Hypertension Department

111a Kievskaya str., Tomsk, 634012



V. V. Rudenko
Siberian State Medical University
Russian Federation

Veronica V. Rudenko, student

Tomsk



A. Yu. Falkovskaya
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Allа Yu. Falkovskaya, MD, PhD, DSc, Head, Hypertension Department

111a Kievskaya str., Tomsk, 634012



References

1. Lind L, Sundström J, Ärnlöv J, Lampa E. Impact of aging on the strength of cardiovascular risk factors: a longitudinal study over 40 years. J Am Heart Assoc. 2018;7(1): e007061. doi:10.1161/JAHA.117.007061

2. Baba M, Maris M, Jianu D, Luca CT, Stoian D, Mozos I. The impact of the blood lipids levels on arterial stiffness. J Cardiovasc Dev Dis. 2023;10(3):127. doi:10.3390/jcdd10030127

3. Vakka A, Warren JS, Drosatos K. Cardiovascular aging: from cellular and molecular changes to therapeutic interventions. J Cardiovasc Aging. 2023;3(3):23. doi:10.20517/jca.2023.09

4. Sobko EA, Kraposhina AYu, Gordeeva NV. Free-radical oxidation as a pathogenetic factor of metabolic syndrome. Obesity and metabolism. 2022;19(3):306–316. doi:10.14341/omet12804. In Russian.

5. Canugovi C, Stevenson MD, Vendrov AE, Hayami T, Robidoux J, Xiao H. et al. Increased mitochondrial NADPH oxidase 4 (NOX4) expression in aging is a causative factor in aortic stiffening. Redox Biol. 2019;26:101288. doi:10.1016/j.redox.2019.101288

6. Abalenikhina YV, Erokhina PD, Seidkuliyeva AA, Zav’yalova OA, Shchul’kin AV, Yakusheva EN. Intracellular location and function of nuclear factor of erythroid origin 2 (Nrf2) in modeling oxidative stress in vitro. IP Pavlov Russian Medical Biological Herald. 2022;30(3):296–304. doi:10. 17816/PAVLOVJ105574. In Russian.

7. Yang X, Jia J, Ding L, Yu Z, Qu C. The role of Nrf2 in D-galactose-induced cardiac aging in mice: involvement of oxidative stress. Gerontology. 2021;67(1):91–100. doi:10.1159/000510470

8. Vilchez D, Saez I, Dillin A. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun. 2014;8(5):5659. doi:10.1038/ncomms6659. PMID: 25482515

9. Wang S, Kandadi MR, Ren J. Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: Role of autophagy and mitophagy. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1865–1875. doi:10.1016/j.bbadis.2018.08.011

10. Verhulst S, Dalgård C, Labat C, Kark JD, Kimura M, Christensen K. et al. A short leucocyte telomere length is associated with development of insulin resistance. Diabetologia. 2016; 59(6):1258–1265. doi:10.1007/s00125-016-3915-6

11. Zhou M, Zhu L, Cui X, Feng L, Zhao X, He S. et al. Influence of diet on leukocyte telomere length, markers of inflammation and oxidative stress in individuals with varied glucose tolerance: a Chinese population study. Nutr J. 2016;15:39. doi:10.1186/s12937-016-0157-x

12. Bhayadia R, Schmidt B.M, Melk A, Hömme M. Senescence-induced oxidative stress causes endothelial dysfunction. J Gerontol A Biol Sci Med Sci. 2016;71(2):161–9. doi:10.1093/gerona/glv008

13. de Lucia C, Piedepalumbo M, Wang L, Carnevale Neto F, Raftery D, Gao E. et al. Effects of myocardial ischemia/reperfusion injury on plasma metabolomic profile during aging. Aging Cell. 2021; e13284. doi:10.1111/acel.13284

14. Dudinskaya EN, Tkacheva ON, Brailova NV, Strazhesko ID, Shestakova MV. Telomere biology and metabolic disorders: the role of insulin resistance and type 2 diabetes. Problems of Endocrinology. 2020;66(4):35–44. doi:10.14341/probl12510. In Russian.

15. Schiattarella GG, Rodolico D, Hill JA. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc Res. 2021;117(2):423–434. doi:10.1093/cvr/cvaa217

16. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127(1):1–4. doi:10.1172/JCI92035

17. McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest. 2017;127(1):5–13. doi:10.1172/JCI88876

18. Johnson SC. Nutrient sensing, signaling and ageing: the role of IGF‑1 and mTOR in ageing and age-related disease. Subcell Biochem. 2018;90:49–97. doi:10.1007/978-981-13-2835-0_3

19. Abdellatif M, Trummer-Herbst V, Heberle AM, Humnig A, Pendl T, Durand S. et al. Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevity. Circulation. 2022;145(25):1853–1866. doi:10.1161/CIRCULATIONAHA.122.059863

20. Logvinov SV, Mustafina LR, Kurbatov BK, Sirotina MA, Gorbunov AS, Naryzhnaya NV. Influence of a highcarbohydrate high-fat diet on age-related changes in the myocardium in rats. Siberian Journal of Clinical and Experimental Medicine. 2023;38(1):90–98. doi:10.29001/2073-8552-2023-38-1-90-98. In Russian.

21. Carbone F, Liberale L, Bonaventura A, Cea M, Montecucco F. Targeting inflammation in primary cardiovascular prevention. Curr Pharm Des. 2016;22(37):5662–5675. doi:10.2174/1381612822666160822124546

22. Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J. 2020;41(31):2974–2982. doi:10.1093/eurheartj/ehz961.

23. Puzianowska-Kuźnicka M, Owczarz M, Wieczorowska-Tobis K, Nadrowski P, Chudek J, Slusarczyk P. et al. Interleukin‑6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun Ageing. 2016;13:21. doi:10.1186/s12979-016-0076-x

24. Csiszar A, Smith K, Labinskyy N, Orosz Z, Rivera A, Ungvari Z. Resveratrol attenuates TNF-alpha-induced activation of coronary arterial endothelial cells: role of NF-kappaB inhibition. Am J Physiol Heart Circ Physiol. 2006;291(4):H1694–9. doi:10.1152/ajpheart.00340.2006

25. Libby P, Ridker PM. Inflammation and atherosclerosis: role of C-reactive protein in risk assessment. Am J Med. 2004; 116(6A):9S‑16S. doi:10.1016/j.amjmed.2004.02.006

26. Saraswati S, Sitaraman R. Aging and the human gut microbiota-from correlation to causality. Front Microbiol. 2015;5: 764. doi:10.3389/fmicb.2014.00764

27. Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H. et al. Source of chronic inflammation in aging. Front Cardiovasc Med. 201822;5:12. doi:10.3389/fcvm.2018.00012

28. Liu Y, Xu X, Lei W, Hou Y, Zhang Y, Tang R. et al. The NLRP3 inflammasome in fibrosis and aging: The known unknowns. Ageing Res Rev. 2022;79:101638. doi:10.1016/j.arr.2022.101638

29. Chiao YA, Dai Q, Zhang J, Lin J, Lopez EF, Ahuja SS. et al. Multi-analyte profiling reveals matrix metalloproteinase‑9 and monocyte chemotactic protein‑1 as plasma biomarkers of cardiac aging. Circ Cardiovasc Genet. 2011;4(4):455–62. doi:10.1161/CIRCGENETICS.111.959981

30. Derangeon M, Montnach J, Cerpa CO, Jagu B, Patin J, Toumaniantz G. et al. Transforming growth factor β receptor inhibition prevents ventricular fibrosis in a mouse model of progressive cardiac conduction disease. Cardiovasc Res. 2017; 113(5):464–474. doi:10.1093/cvr/cvx026

31. Malinova LI, Dolotovskaya PV, Furman NV, Tolstov SN, Klochkov VA, Denisova TP. Estimation of metabolic burden within the concept of vascular ageing in hypertension (a study of the able-bodied population of a large industrial center). Arterial’naya Gipertenziya = Arterial Hypertension. 2023;29(1):24–37. doi:10.18705/1607-419X-2023-29-1-24-37. In Russian.

32. Gapon LI. Hypertension and arterial wall stiffness in clinical practice: literature review. Russian Journal of Cardiology. 2024;29(5):5924. doi:10.15829/1560-4071- 2024-5924. In Russian.

33. Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009–1023. doi:10.1093/cvr/cvx108

34. Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L. et al. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest. 2016;126(4): 1607. doi:10.1172/JCI87425

35. Trębacz H, Barzycka A. mechanical properties and functions of elastin: an overview. Biomolecules. 2023;13(3):574. doi:10.3390/biom13030574

36. Kopaliani I, Martin M, Zatschler B, Bortlik K, Muller B, Deussen A. Cell-specific and endothelium-dependent regulations of matrix metalloproteinase‑2 in rat aorta. Basic Res Cardiol. 2014;109:419. doi:10.1007/s00395-014-0419-8

37. Zyubanova IV, Mordovin VF, Falkovskaya AY, Pekarsky SE, Ripp TM, Lichikaki VA. et al. Тhe effects of renal denervation on dynamics of biochemical indicators of vascular fibrosis in patients with resistant hypertension. Siberian Journal of Clinical and Experimental Medicine. 2016;31(2):18–22. doi:10.29001/2073-8552-2016-31-2-18-22. In Russian

38. Wang M, Kim SH, Monticone RE, Lakatta EG. Matrix metalloproteinases promote arterial remodeling in aging, hypertension, and atherosclerosis. Hypertension. 2015;65(4):698–703. doi:10.1161/HYPERTENSIONAHA.114.03618

39. Bouvet C, Moreau S, Blanchette J, de Blois D, Moreau P. Sequential activation of matrix metalloproteinase 9 and transforming growth factor beta in arterial elastocalcinosis. Arterioscler Thromb Vasc Biol. 2008(5):856–62. doi:10.1161/ATVBAHA.107.153056

40. Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766. doi:10.1016/j.metabol.2021.154766

41. Sang Y, Cao M, Wu X, Ruan L, Zhang C. Use of lipid parameters to identify apparently healthy men at high risk of arterial stiffness progression. BMC Cardiovasc Disord. 2021;21(1):34. doi:10.1186/s12872-020-01846-x

42. Dudinskaya EN, Tkacheva ON, Matchekhina LV, Kotovskaya YuV, Leonteva IV, Kovalev IA et al. Replicative cell ageing: the role of insulin resistance in patients with arterial hypertension. Arterial’naya Gipertenziya = Arterial Hypertension. 2019;25(3):225–231. doi:10.18705/1607-419X-2019-25-3-225-231. In Russian.

43. Mulè G, Nardi E, Geraci G, Schillaci MK, Cottone S. The relationships between lipid ratios and arterial stiffness. J Clin Hypertens (Greenwich). 2017;19(8):777–779. doi:10.1111/jch.13030

44. Avdeeva KS, Petelina TI, Gapon LI, Musikhina NA, Zueva EV. Features of arterial hypertension in postmenopausal women with abdominal obesity: The role of inflammatory response markers, leptin, and female sex hormones in the pathogenesis of vascular wall stiffness. Siberian Journal of Clinical and Experimental Medicine. 2019;34(3):103–113. doi:10.29001/2073-8552-2019-34-3-103-113. In Russian.

45. Jura M, Kozak LP. Obesity and related consequences to ageing. Age (Dordr). 2016;38(1):23. doi:10.1007/s11357-016-9884-3

46. Tam BT, Morais JA, Santosa S. Obesity and ageing: two sides of the same coin. Obes Rev. 2020;21(4): e12991. doi:10.1111/obr.12991

47. Kuk JL, Saunders TJ, Davidson LE, Ross R. Age-related changes in total and regional fat distribution. Ageing Res Rev. 2009;8(4):339–48. doi:10.1016/j.arr.2009.06.001

48. Wang Y, Wang X, Chen Y, Zhang Y, Zhen X, Tao S et al. Perivascular fat tissue and vascular aging: A sword and a shield. Pharmacol Res. 2024;203:107140. doi:10.1016/j.phrs.2024.107140

49. Virdis A, Duranti E, Rossi C, Dell’Agnello U, Santini E, Anselmino M et al. Tumour necrosis factor-alpha participates on the endothelin‑1/nitric oxide imbalance in small arteries from obese patients: role of perivascular adipose tissue. Eur Heart J. 2015;36(13):784–94. doi:10.1093/eurheartj/ehu072

50. Adachi Y, Ueda K, Nomura S, Ito K, Katoh M, Katagiri M et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling. Nat Commun. 2022;13(1):5117. doi:10.1038/s41467-022-32658-6

51. Mu WJ, Song YJ, Yang LJ, Qian SW, Yang QQ, Liu Y et al. Bone morphogenetic protein 4 in perivascular adipose tissue ameliorates hypertension through regulation of angiotensinogen. Front Cardiovasc Med. 2022;9:1038176. doi:10.3389/fcvm.2022.1038176

52. Takaoka M, Nagata D, Kihara S, Shimomura I, Kimura Y, Tabata Y et al. Periadventitial adipose tissue plays a critical role in vascular remodeling. Circ Res. 2009;105(9):906–11. doi:10.1161/CIRCRESAHA.109.199653

53. Ying R, Li SW, Chen JY, Zhang HF, Yang Y., Gu ZJ et al. Endoplasmic reticulum stress in perivascular adipose tissue promotes destabilization of atherosclerotic plaque by regulating GM–CSF paracrine. J Transl Med. 2018;16(1):105. doi:10.1186/s12967-018-1481-z

54. Yun CH, Longenecker CT, Chang HR, Mok GS, Sun JY, Liu CC et al. The association among peri-aortic root adipose tissue, metabolic derangements and burden of atherosclerosis in asymptomatic population. J Cardiovasc Comput Tomogr. 2016;10(1):44–51. doi:10.1016/j.jcct.2015.10.002

55. Du W, Wong C, Song Y, Shen H, Mori D, Rotllan N et al. Age-associated vascular inflammation promotes monocytosis during atherogenesis. Aging Cell. 2016;15(4):766–77. doi:10.1111/acel.12488

56. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586. doi:10.3389/fimmu.2018.00586

57. Stojanović SD, Fiedler J, Bauersachs J, Thum T, Sedding DG. Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. Eur Heart J. 2020;41(31):2983–2996. doi:10.1093/eurheartj/ehz919

58. Ostanina YuO, Yakhontov DA, Zvonkova AV, Zhuravleva II, Dunicheva OV, Yakhontova PK. Systemic inflammation in patients with hypertension and coronary artery disease in different age groups. Siberian Journal of Clinical and Experimental Medicine. 2019;34(3):97–102. doi:10.29001/2073-8552-2019-34-3-97-102. In Russian

59. Ikeda U, Shimada K. Matrix metalloproteinases and coronary artery diseases. Clin Cardiol. 2003;26(2):55–9. doi:10.1002/clc.4960260203


Supplementary files

Review

For citations:


Zyubanova I.V., Mordovin V.F., Lichikaki V.A., Manukyan M.A., Khunkhinova S.A., Solonskaya E.I., Rudenko V.V., Falkovskaya A.Yu. Vascular aging: the role of hypertension, obesity and meta-inflammation. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2024;30(6):553–561. (In Russ.) https://doi.org/10.18705/1607-419X-2024-2474. EDN: XOHWRU

Views: 350


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)