Preview

Артериальная гипертензия

Расширенный поиск

ФУНКЦИОНАЛЬНАЯ ГЕТЕРОГЕННОСТЬ ЭНДОТЕЛИЯ (ОБЗОР)

https://doi.org/10.18705/1607-419X-2017-23-2-88-102

Полный текст:

Аннотация

На основании данных отечественной и зарубежной литературы в обзоре систематизированы сведения об особенностях строения и функциях эндотелия сосудов головного мозга, сердца, легких, печени и почек. Эндотелиальные клетки обладают важными функциями, реализация которых зависит от гемодинамики и клеточного микроокружения конкретного органа или ткани. Проявления дисфункции эндотелия, направленность и выраженность изменений образования отдельных эндотелиальных факторов обусловлены гетерогенностью эндотелия и зависят от структуры, биохимической организации и функции органа. Понимание различий в морфологии и функциях различных субпопуляций эндотелиальных клеток имеет большое значение для лечения эндотелиальных дисфункций, протезирования сосудов, для реваскуляризации и регенерации ишемизированных органов.

 

Об авторах

Л. В. Васина
Федеральное государственное бюджетное учреждение «Северо-Западный федеральный медицинский исследовательский центр имени B. A. Алмaзoвa» Министерства здравоохранения Российской Федерации
Россия
доктор медицинских наук, старший научный сотрудник научно-исследовательской лаборатории микроциркуляции Института экспериментальной медицины


Т. Д. Власов
Федеральное государственное бюджетное учреждение «Северо-Западный федеральный медицинский исследовательский центр имени B. A. Алмaзoвa» Министерства здравоохранения Российской Федерации Федеральное государственное образовательное учреждение высшего профессионального образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Министерства здравоохранения Российской Федерации
Россия
доктор медицинских наук, профессор, ведущий научный сотрудник научно- исследовательской лаборатории микроциркуляции Института экспериментальной медицины ФГБУ «СЗФМИЦ им. В.А. Алмазова» Минздрава России, заведующий кафедрой патофизиологии с курсом клинической патофизиологии ГБОУ ВПО ПСПбГМУ им. И.П. Павлова Минздрава России


Н. Н. Петрищев
Федеральное государственное бюджетное учреждение «Северо-Западный федеральный медицинский исследовательский центр имени B. A. Алмaзoвa» Министерства здравоохранения Российской Федерации Федеральное государственное образовательное учреждение высшего профессионального образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова» Министерства здравоохранения Российской Федерации
Россия
доктор медицинских наук, руководитель НИЛ микроциркуляции Института экспериментальной медицины ФГБУ «СЗФМИЦ им. В.А. Алмазова» Минздрава России, профессор кафедры патофизиологии с курсом клинической патофизиологии ГБОУ ВПО ПСПбГМУ им. И.П. Павлова Минздрава России


Список литературы

1. Florey HW. The endothelial cell. Br Med J. 1966;2(5512): 487–90.

2. Aird WC. Phenotypic heterogeneity of the endothelium: structure, function, and mechanisms. Circ Res. 2007;100(2):158–73. doi:10.1161/01.RES.0000255691.76142.4a

3. Шевченко Н. А. Эндотелий магистральных сосудов млекопитающих и его место в системе тканей. Арх. нат. гистол. и эмбриол. 1967;53(12):3–18. [Shevchenko NA. Endothelium of the major vessels in mammals and its place in the system of tissues. Arkhiv Anatomii, Gistologii i Embriologii = Arсhivеs of Anatomy, Histology and Embriology. 1967;53(12):3–18. In Russian].

4. Garlanda C, Dejana E. Heterogeneity of endothelial cells. Specific markers. Arterioscler Thromb Vasc Biol. 1997;17(7):1193– 202. https://doi.org/10.1161/01.ATV.17.7.1193

5. Baudin B, Berard M, Carrier JL, Legrand Y, Drouet L. Vascular origin determines angiotensin I-converting enzyme expression in endothelial cells. Endothelium. 1997;5(1):73–84.

6. Ochoa CD, Wu S, Stevens T. New developments in lung endothelial heterogeneity: von Willebrand factor, P-selectin, and the Weibel–Palade body. Semin Thromb Hemost. 2010;36(3):301–8. doi: 10.1055/s-0030–1253452

7. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83(1):59–115. doi:10.1152/physrev.00017. 2002

8. Rosendorff С. Essential cardiology: principles and practice (2nd ed.). Totowa NJ: Humana Press: 2005. p. 865.

9. Gale NW, Baluk P, Pan L, Kwan M, Holash J, DeChiara TM et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol. 2001;230:151–60. doi:10.1006/dbio.2000.0112

10. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000;14(11):1343–52.

11. Seki T, Yun J, Oh SP. Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling. Circ Res. 2003;93(7):682–9. doi:10.1161/ 01.RES.0000095246.40391.3B

12. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11(1):72–82. doi:10. 1101/gad.11.1.72

13. Nakagawa O, Nakagawa M, Richardson JA, Olson EN, Srivastava D. HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic, and pharyngeal arch segments. Dev Biol. 1999;216(1):72–84. doi: 10. 1006/dbio.1999.9454

14. Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development. 2005;132 (5):941–52. doi:10.1242/dev.01675

15. Shin D, Anderson DJ. Isolation of arterial-specific genes by subtractive hybridization reveals molecular heterogeneity among arterial endothelial cells. Dev Dyn. 2005;233(4):1589–1604. doi: 10. 1002/dvdy.20479

16. Yuan L, Moyon D, Pardanaud L, Bréant C, Karkkainen MJ, Alitalo K et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 2002;129(20):4797– 806.

17. Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell. 1999;4(3):403–14. doi:http://dx.doi.org/10.1016/S1097– 2765(00)80342–1

18. You LR, Lin FJ, Lee CT, DeMayo FJ, Tsai MJ, Tsai SY. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature. 2005;435(7038):98–104. doi:10. 1038/nature03511

19. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93(5):741–53. doi:http://dx.doi.org/10.1016/S0092–8674(00)81436–1

20. Jubb AM, Turley H, Moeller HC, Steers G, Han C, Li J-L et al. Expression of delta-like ligand 4 (Dll4) and markers of hypoxia in colon cancer. Br J Cancer. 2009;101(10):1749–57. doi:10. 2353/ajpath.2010.090908

21. Chavez JC, Agani F, Pichiule P, LaManna JC. Expression of hypoxia inducible factor — 1 in the brain of rats during chronic hypoxia. J Appl Physiol; 2000;89(5):1937–42.

22. Vecchia L, Olivieri C, Scotti C. Activin receptor-like kinase 1: a novel antiangiogenesis target from TGF-β family. Mini Rev Med Chem. 2013;13(10):1398–406.

23. Favier B, Alam A, Barron P, Bonnin J, Laboudie P, Fons P et al. Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood. 2006;108(4):1243–50. doi:10.1182/blood-2005–11–4447

24. Takashima S, Kitakaze M, Asakura M, Asanuma H, Sanada S, Tashiro F et al. Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. PNAS. 2002;99(6):3657–62. doi:10. 1073/pnas.022017899

25. Bielenberg DR, Hida Y, Shimizu A, Kaipainen A, Kreuter M, Kim CC et al. Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. J Clin Invest. 2004;114(9):1260–71. doi: 10.1172/ JCI21378

26. Pan Q, Chanthery Y, Liang WC, Stawicki S, Mak J, Rathore N et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell. 2007;11(1):53–67. doi:10.1016/j.ccr.2006.10.018

27. Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C et al. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol. 2008;6(9): e227. doi:10.1371/journal.pbio.0060227

28. Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signaling and beyond. Nat Rev Cancer. 2010;10 (3):165–180. doi:10.1038/nrc2806

29. Kida Y, Ieronimakis N, Schrimpf C, Reyes M, Duffield JS. Ephrin B2 reverse signaling protects against capillary rarefaction and fibrosis after kidney injury. J Am Soc Nephrol. 2013;24(4):559–72. doi:10.1681/ASN.2012080871

30. Moyon D, Pardanaud L, Yuan L, Bréant C, Eichmann A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development. 2001;128 (17):3359–70.

31. Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and resistant regions of human vasculature. Proc Natl Acad Sci USA. 2004;101(41):14871–6.doi:10.1073/pnas. 0406073101

32. Kwei S, Stavrakis G, Takahas M, Taylor G, Folkman MJ, Gimbrone MA Jr et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am J Pathol. 2004;164 (1):81–9. doi:10.1016/S0002–9440 (10)63099–4

33. Golledge J, Turner RJ, Harley SL, Springall DR, Powell JT. Circumferential deformation and shear stress induce differential responses in saphenous vein endothelium exposed to arterial flow. J Clin Invest. 1997;99(11):2719–26. doi:10.1172/JCI119461

34. Gosling M, Golledge J, Turner RJ, Powell JT. Arterial flow conditions downregulate thrombomodulin on saphenous vein endothelium. Circulation. 1999;99(8):1047–53. https://doi.org/ 10.1161/01.CIR.99.8.1047

35. Lusher TF, Barton M. Biology of the endothelium. Clin Cardiology. 1997;20 (11 Suppl 2):3–10.

36. Coomber BL, Stewart PA. Morphometric analysis of CNS microvascular endothelium. Microvasc Res. 1985;30(1):99–115. http://dx.doi.org/10.1016/0026–2862 (85)90042–1

37. Meisenberg G, Simmons WH. Peptides and blood-brain barrier. Life Sci. 1993;32(23):2611–23.

38. Mi H, Haeberle H, Barres BA. Induction of astrocyte differentiation by endothelial cells. J Neurosci. 2001;21(5):1538–47.

39. Chen Y, Swanson RA. Astrocytes and brain injury. J Cereb Blood Flow Metab. 2003;23(2):137–49. doi:10.1097/01. WCB.0000044631.80210.3C

40. Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998;53(6): 637–44.

41. Рябухин И. А., Дмитриева Т. Б., Чехонин В. П. Гемато-энцефалический барьер (ч. I). Эмбриоморфогенез, клеточная и субклеточная биология плотных контактов эндотелиоцитов. Нейрохимия. 2003;20:12–23. [Rjabukhin IA, Dmitrieva TB, Chekhonin VP. Blood Brain Barrier (Part 1). Embriomorphogenesis, cellular biology and protein structure of the endothelial tight functions. Neyrokhimija = Neurochemistry. 2003;20:12–23. In Russian].

42. Rakiс P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972;145(1):61–83. doi:10. 1002/cne.901450105

43. Sasaki A, Hirato J, Nakazato Y, Ishida Y. Immunohistochemical study of the early human fetal brain. Acta Neuropathol. 1988;76(2):128–34. doi:10.1007/BF00688096

44. Stewart PA, Hayakawa K. Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Brain Res Dev Brain Res. 1994;78(1):25–34.

45. Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104(1):29–45. doi:10.1016/j.pharmthera.2004.08.001

46. Wakai S, Hirokawa N. Development of blood-cerebro-spinal fluid barrier to horseradish peroxidase in the avian choroidal epithelium. Cell Tissue Res. 1981;214(2):271–8. doi:10.1007/ BF00249211

47. Жулев Н. М., Пустозеров В. Г., Жулев С. Н. Цереброваскулярные заболевания. Профилактика и лечение инсультов. СПб.: Невский диалект, 2002. С. 384. [Zhulev NM, Pustozerov VG, Zhulev SN. Cerebrovascular diseases. Prevention and treatment of strokes. SPb.: Nevskiy dialect; 2002. p. 384. In Russian].

48. Brutsaert DL, Fransen P, Andries LJ, De Keulenaer GW, Sys SU. Cardiac endothelium and myocardial function. Cardiovasc Res. 1998;38(2):281–90. doi:https://doi.org/10.1016/S0008–6363 (98)00044–3

49. Aird WC. Discovery of the cardiovascular system: from Galen to William Harvey. J Thromb Haemost. 2011;9(Suppl 1):118–29. doi:10.1111/j.1538–7836.2011.04312.x

50. Andries LJ, Brutsaert DL, Sys SU. Nonuniformity of endothelial constitutive nitric oxide synthase distribution in cardiac endothelium. Circ Res. 1998;82(2):195–203.

51. Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K et al. Down regulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke. Circulation. 2002;106(22):2854–8. https://doi.org/10.1161/01.CIR.0000039327.11661.16

52. Yamamoto K, de Waard V, Fearns C, Loskutoff DJ. Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood. 1998;92(8):2791–801.

53. Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H et al. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol. 2006;26(1):69–77. doi:10.1161/01. ATV.0000130462.50769.5a

54. Wunsch AM, Little CD, Markwald RR. Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Dev Biol. 1994;165(2):585–601. doi:10.1006/dbio.1994.1278

55. Hsieh PC, Davis ME, Lisowski LK, Lee RT. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006;68:51–66. doi:10.1146/annurev. physiol.68.040104.124629

56. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation. 2004;110(8):962–8. doi:10.1161/01.CIR.0000140667. 37070.07

57. Bjarnegard M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A et al. Endothelium-specific ablation of PDGF-B leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development. 2004;131(8):1847–1857. doi: 10.1242/dev.01080

58. Giordano FJ, Gerber HP, Williams SP, Van Bruggen N, Bunting S, Ruiz-Lozano P et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA. 2001;98(10):5780–5. doi:10.1073/pnas.091415198

59. Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res. 2004;95(2):187–95. doi:10.1161/01. RES.0000134921.50377.61

60. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA et al. Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature. 2002;416 (6878):337–9. doi:10.1038/416005a

61. Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD. Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol. 1997;138(5):1117–24. doi:10.1083/jcb.138.5.1117

62. Gao M, Shirato H, Miyasaka K, Koyama T. Effect of irradiation on enzymes of the capillary bed in rat ventricles. Adv Exp Med Biol. 2003;530:527–33.

63. Koop EA, Lopes SM, Feiken E, Bluyssen HA, van der Valk M, Voest EE et al. Receptor protein tyrosine phosphatase mu expression as a marker for endothelial cell heterogeneity; analysis of RPTPmu gene expression using LacZ knock-in mice. Int J Dev Biol. 2003;47(5):345–54.

64. Волкова О. В., Пекарский М. Н. Эмбриогенез и возрастная гистология внутренних органов человека. М.: Медицина, 1976. С. 414. [Volkova OV, Pekarskii MN. Embryogenesis and age histology of human internal organs. Moscow: Medicine, 1976. Р. 414. In Russian].

65. Roughton FJW, Forster RE. Relative importance of diffusion and chemical reaction rates determining rate of exchange of gases in the human lung with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J Appl Physiol. 1957;11(2):290–302.

66. Balyasnikova IV, Metzger R, Visintine DJ, Dimasius V, Sun ZL, Berestetskaya YV et al. Selective rat lung endothelial targeting with a new set of monoclonal antibodies to angiotensin I-converting enzyme. Pulm Pharmacol Ther. 2005;18(4):251–67. doi:10.1016/j.pupt.2004.12.008

67. Gebb S, Stevens T. On lung endothelial cell heterogeneity. Microvasc Res. 2004;68(1):1–12. doi:10.1016/j.mvr.2004.02.002

68. Pusztaszeri MP, Seelentag W, Bosman FT. Immuno-histochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem. 2006;54 (4):385–95. doi: 10.1369/jhc.4A6514.2005

69. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature. 2004;429 (6992):629–35. doi: 10.1038/nature02580

70. Kelly JJ, Moore TM, Babal P, Diwan AH, Stevens T, Thompson WJ. Pulmonary microvascular and macrovascular endothelial cells: differential regulation of Ca2+ and permeability. Am J Physiol. 1998;274(5 Pt 1):810–819.

71. Parker JC, Stevens T, Randall J, Weber DS, King JA. Hydraulic conductance of pulmonary microvascular and macrovascular endothelial cell monolayers. Am J Physiol Lung Cell Mol Physiol. 2006;291(1):30–7. doi: 10.1152/ajplung.00317.2005

72. Stenmark KR, Abman SH. Lung vascular development: implications for the pathogenesis of bronchopulmonary dysplasia. Annu Rev Physiol. 2005;67:623–661. doi:10.1146/annurev. physiol.67.040403.102229

73. Moldobaeva A, Wagner EM. Heterogeneity of bronchial endothelial cell permeability. Am J Physiol Lung Cell Mol Physiol. 2002;283(3):520–27. doi:10.1152/ajplung.00451.2001

74. Oda M, Yokomori H, Han JY. Regulatory mechanisms of hepatic microcirculation. Clin Hemorheol Microcirc. 2003;29 (3–4):167–82.

75. Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol. 2002;1(1):1. doi:10.1186/1476–5926–1-1

76. McCuskey RS. Morphological mechanisms for regulating blood flow through hepatic sinusoids. Liver. 2000;20(1):3–7. doi:10. 1034/j.1600–0676.2000.020001003.x

77. Zhou B, Weigel JA, Fauss L, Weigel PH. Identification of the hyaluronan receptor for endocytosis (HARE). J Biol Chem. 2000;275(48):37733–41. doi: 10.1074/jbc.M003030200

78. Wisse E, De Zanger RB, Jacobs R, McCuskey RS. Scanning electron microscope observations on the structure of portal veins, sinusoids and central veins in rat liver. Scan Electron Microsc. 1983;(Pt 3):1441–1452.

79. Ogi M, Yokomori H, Oda M, Yoshimura К, Nomura М, Ohshima S et al. Distribution and localization of caveolin-1 in sinusoidal cells in rat liver. Med Electron Microsc. 2003;36(1):33–40. doi:10.1007/s007950300004

80. Theuerkauf I, Zhou H, Fischer HP. Immunohistochemical patterns of human liver sinusoids under different conditions of pathologic perfusion. Virchows Arch. 2001;438(5):498–504. doi:10. 1007/s004280000364

81. Dini L, Carla EC. Hepatic sinusoidal endothelium heterogeneity with respect to the recognition of apoptotic cells. Exp Cell Res. 1998;240(2):388–93. http://dx.doi.org/10. 1006/excr.1998.4015

82. Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M. Zonal gene expression in murine liver: lessons from tumors. Hepatology. 2006;43(3):407–14. doi:10.1002/hep.21082

83. Naito M, Hasegawa G, Ebe Y, Yamamoto T. Differentiation and function of Kupffer cells. Med Electron Microsc. 2004;37 (1):16–28. doi:10.1007/s00795–003–0228-x

84. . Racanelli V, Rehermann B . The liveras an immunological organ. Hepatology. 2006;43(2 Suppl 1): 54–62. doi:10.1002/hep.21060

85. LeCouter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science. 2003;299(5608):90–3. doi:10. 1126/science.1079562

86. Levidiotis V, Power DA. New insights into the molecular biology of the glomerular filtration barrier and associated disease. Nephrology (Carlton). 2005;10(2):157–66. doi:10.1111/j.1440–1797. 2005.00385.x

87. Rostgaard J, Qvortrup K. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenes- trae. Microvasc Res. 1997;53 (1):1–13. doi: 10.1006/mvre.1996. 1987

88. Stan RV, Kubitza M, Palade GE. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc Natl Acad Sci USA. 1999;96(23):13203–7. http://www.jstor. org/stable/49143

89. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest. 2003;111(5):707–16. doi:10.1172/JCI17423

90. Eng E, Holgren C, Hubchak S, Naaz P, Schnaper HW. Hypoxia regulates PDGF-B interactions between glomerular capillary endothelial and mesangial cells. Kidney Int. 2005;68 (2):695–703. doi:10.1111/j.1523–1755.2005.00448.x

91. Pallone TL, Turner MR, Edwards A, Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2003;284(5):1153–75. doi:10.1152/ ajpregu.00657.2002

92. Han KH, Lim JM, Kim WY, Kim H, Madsen KM, Kim J. Expression of endothelial nitric oxide synthase in developing rat kidney. Am J Physiol Renal Physiol. 2005;288(4):694–702. doi:10. 1152/ajprenal.00085.2004

93. Zhang J, Hill CE. Differential connexin expression in preglomerular and postglomerular vasculature: accentuation during diabetes. Kidney Int. 2005;68(3):1171–85. doi:10.1111/j.1523– 1755.2005.00509.x

94. Inai T, Sengoku A, Guan X, Hirose E, Iida H, Shibata Y. Heterogeneity in expression and subcellular localization of tight junction proteins, claudin-10 and –15, examined by RT-PCR and immunofluorescence microscopy. Arch Histol Cytol. 2005;68 (5):349–60. http://doi.org/10.1679/aohc.68.349

95. Lucien N, Bruneval P, Lasbennes F, Belair MF, Mandet C, Cartron JP et al. UT-B1 urea transporter is expressed along the urinary and gastrointestinal tracts of the mouse. Am J Physiol Regul Integr Comp Physiol. 2005288(4):1046–56. doi: 10. 1152/ajpregu.00286.2004

96. Lee-Kwon W, Wade JB, Zhang Z, Pallone TL, Weinman EJ. Expression of TRPC4 channel protein that interacts with NHERF-2 in rat descending vasa recta. Am J Physiol Cell Physiol. 2005;288 (4):942–49. doi:10.1152/ajpcell.00417.2004

97. Kelly MA, Hirschi KK. Signaling hierarchy regulating human endothelial cell development. Arterioscler Thromb Vasc Biol. 2009;29(5):718–24. doi:10.1161/ATVBAHA.109.184200

98. Breier G, Clauss M, Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn. 1995;204(3):228–39. doi:10.1002/aja.1002040303

99. Rupp PA, Little CD. Integrins in vascular development. Circ. Res. 2001;89(7):566–72. doi.org/10.1161/hh1901.097747

100. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct αv integrins. Science. 1995;270(5241):1500–2. doi:10. 1126/science.270.5241.1500

101. Ding B-S, Nolan DJ, Guo P, Babazadeh AO, Cao Z, Rosenwaks Z et al. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell. 2011;147 (3);539–53. doi:10.1016/j.cell.2011.10.003

102. Jia Х, Lü H, Li C, Feng G, Yao X, Mao L et al. Human embryonic stem cells-derived endothelial cell therapy facilitates kidney regeneration by stimulating renal resident stem cell proliferation in acute kidney injury. Chinese Sci Bull. 2013;58 (23):2820–27. doi:10.1007/s11434–013–5890–3

103. Talavera-Adame D, Dafoe DC. Endothelium-derived essential signals involved in pancreas organogenesis. World J Exp Med. 2015;5(2):40–9. doi:10.5493/wjem.v5.i2.40


Для цитирования:


Васина Л.В., Власов Т.Д., Петрищев Н.Н. ФУНКЦИОНАЛЬНАЯ ГЕТЕРОГЕННОСТЬ ЭНДОТЕЛИЯ (ОБЗОР). Артериальная гипертензия. 2017;23(2):88-102. https://doi.org/10.18705/1607-419X-2017-23-2-88-102

For citation:


Vasina L.V., Vlasov T.D., Petrishchev N.N. FUNCTIONAL HETEROGENEITY OF THE ENDOTHELIUM (THE REVIEW). "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2017;23(2):88-102. (In Russ.) https://doi.org/10.18705/1607-419X-2017-23-2-88-102

Просмотров: 415


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)