Preview

"Arterial’naya Gipertenziya" ("Arterial Hypertension")

Advanced search

LEVELS OF CIRCULATING MICRORNA-21-5P IN CHILDREN WITH TYPE 1 DIABETES MELLITUS

https://doi.org/10.18705/1607-419X-2017-23-6-597-603

Abstract

Objective. To determine the levels of circulating microRNA-21-5p in various fractions of blood plasma in children with type 1 diabetes mellitus (DM1) and to study their relationship with the clinical and laboratory characteristics. Design and methods. The study included 12 patients with confirmed DM1 (mean age 12 years, boys/girls = 6/6). The control group consisted of 12 healthy children without diabetes mellitus and other metabolic disorders) (mean age 9 years, boys/girls = 5/7). Ultracentrifugation was used to separate blood plasma into the exosome fraction and the fraction without membrane vesicles. A quantitative analysis of the levels of mature microRNA-21-5p in plasma fractions was carried out by real-time polymerase chain reaction. Results. In the control group, age is not associated with either the levels of microRNA-21-5p in the exosome fraction, or with the levels of microRNA-21-5p in the supernatant fraction. In patients with DM1, the age is not associated with the level of microRNA-21-5p in the exosome fraction. In the supernatant fraction, the level of microRNA-21-5p negative correlated with the age of patients with DM1 (r = –0,75; p = 0,005), as well as with the glycated hemoglobin level (r = –0,59, p = 0,045). In children with DM1 aged 10 years and older, a 1,6-fold decrease (p = 0,026) in the levels of microRNA-21-5p from the supernatant fraction compared to the control group is observed. There were no differences in the levels of microRNA-21-5p between the sex-different cohorts of children, both in the control group and among patients with diabetes mellitus. Conclusions. In 2–16-year-old children with DM1, levels of circulating extravesicular microRNA-21-5p correlate with age and the level of glycated hemoglobin. DM1 is accompanied by a decrease of circulating extravesicular microRNA-21-5p levels in 10–16 years old children.

About the Authors

K. A. Kondratov
Almazov National Medical Research Centre.
Russian Federation

Kirill A. Kondratov, PhD in Biology Sciences, Senior Researcher, Laboratory of Molecular and Cellular Mechanisms of Atherosclerosis, Institute of Molecular Biology and Genetics.

  St Petersburg. 



O. V. Melnik
Almazov National Medical Research Centre.
Russian Federation

Olesya V. Melnik, MD, PhD, Researcher, Laboratory of Surgery for Hereditary and Congenital Pathology.

  St Petersburg. 



T. A. Petrova
Almazov National Medical Research Centre.
Russian Federation

Tatiana A. Petrova, PhD in Biology Sciences, Researcher, Laboratory of Molecular Cardiology, Institute of Molecular Biology and Genetics.

  St Petersburg. 



A. V. Fedorov
Almazov National Medical Research Centre.
Russian Federation

Anton V. Fedorov, PhD in Biology Sciences, Head, Laboratory of Molecular and Cellular Mechanisms of Atherosclerosis, Institute of Molecular Biology and Genetics.

  St Petersburg. 



I. L. Nikitina
Almazov National Medical Research Centre.
Russian Federation

Irina L. Nikitina, MD, PhD, Head, Laboratory of Pediatric Endocrinology, Institute of Endocrinology.

  St Petersburg. 



I. Yu. Artemeva
Almazov National Medical Research Centre.
Russian Federation

Irina Yu. Artemeva, MD, Researcher, Laboratory of Pediatric Endocrinology, Institute of Endocrinology.

  St Petersburg. 



T. M. Pervunina
Almazov National Medical Research Centre; St Petersburg State University.
Russian Federation

Tatiana M. Pervunina, MD, PhD, Head, Pediatrics Department; Assistant, Pediatrics department, Medical Faculty.

  St Petersburg. 



A. Yu. Babenko
Almazov National Medical Research Centre; First Pavlov State Medical University of St. Petersburg.
Russian Federation

Alina Yu. Babenko, MD, PhD, Head, Laboratory of Diabetology; Associate Professor, Department of Therapy with the Course of Endocrinology n. a. G. F. Lang.

  St Petersburg. 



A. A. Kostareva
Almazov National Medical Research Centre.
Russian Federation

Anna A. Kostareva, MD, PhD, Head, Institute of Molecular Biology and Genetics.

  St Petersburg. 



E. V. Shlyakhto
Almazov National Medical Research Centre; First Pavlov State Medical University of St. Petersburg.
Russian Federation

Eugene V. Shlyakhto, MD, PhD, DSc, Professor, Academician of the Russian Academy of Sciences, General Director;  Head, Department of Internal Diseases.

  St Petersburg. 



References

1. Grover-Paez F, Zavalza-Gomez AB. Endothelial dysfunction and cardiovascular risk factors. Diabetes Res Clin Pract. 2009;84 (1):1–10. doi:10.1016/j.diabres.2008.12.013

2. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med. 1993;328(23):1676–85. doi:10.1056/ NEJM199306103282306

3. Pomilio M, Mohn A, Verrotti A, Chiarelli F. Endothelial dysfunction in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2002;15(4):343–361.

4. Wang J, Liew OW, Richards AM, Chen YT. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis. Int J Mol Sci. 2016;17(5):749.

5. LaPierre MP, Stoffel M. MicroRNAs as stress regulators in pancreatic beta cells and diabetes. Mol Metab. 2017;6(9):1010– 1023.

6. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597–610. doi:10.1038/nrg2843

7. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012; 110(3):483–495. doi:10.1161/CIRCRESAHA.111.247452

8. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol. 2011;80(2):193–208. doi:10.1016/j.critrevonc.2010.11.004

9. Hu J, Ni S, Cao Y, Zhang T, Wu T, Yin X et al. The angiogenic effect of microRNA-21 targeting TIMP3 through the regulation of MMP2 and MMP9. PLoS One. 2016;11(2): e0149537. doi:10.1371/journal.pone.0149537.

10. Кондратов К. А., Петрова Т. А., Михайловский В. Ю., Иванова А. Н., Костарева А. А., Федоров А. В. Изучение внеклеточных везикул, выделенных из плазмы крови, с помощью сканирующей электронной микроскопии низкого напряжения. Цитология. 2017;59(3)169–177. [Kondratov KA, Petrova TA, Mikhailovskii VU, Ivanova AN, Kostareva AA, Fedorov AV. Extracellular vesicles from blood plasma studied by low voltage scanning electron microscopy. Tsitologiia = Cytology. 2017; 59 (3)169–177. doi:10.1134/S1990519X17030051. In Russian]

11. Kondratov K, Kurapeev D, Popov M, Sidorova M, Minasian S, Galagudza M et al. Heparinase treatment of heparin-contaminated plasma from coronary artery bypass grafting patients enables reliable quantification of microRNAs. Biomolecular detection and quantification 2016;8:9–14. doi:10.1016/j.bdq.2016.03.001

12. Meder B, Backes C, Haas J, Leidinger P, Stahler C, Großmann T et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin Chem. 2014;60 (9):1200–1208. doi:10.1373/clinchem.2014.224238

13. Noren Hooten N, Fitzpatrick M, Wood WH 3rd, De S, Ejiogu N, Zhang Y et al. Age-related changes in microRNA levels in serum. Aging (Albany NY). 2013;5(10):725–740. doi:10.18632/aging.100603

14. Ameling S, Kacprowski T, Chilukoti RK, Malsch C, Liebscher V, Suhre K et al. Associations of circulating plasma microRNAs with age, body mass index and sex in a populationbased study. BMC Med Genomics. 2015;8:61. doi:10.1186/s12920– 015–0136–7

15. Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012;133(11–12):675–685. doi:10.1016/j.mad.2012.09.004

16. Olivieri F, Bonafè M, Spazzafumo L, Gobbi M, Prattichizzo F, Recchioni R et al. Age- and glycemia-related miR-126–3p levels in plasma and endothelial cells. Aging (Albany NY). 2014;6(9):771– 787. doi:10.18632/aging.100693

17. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107(6):810–817. doi:10.1161/CIRCRESAHA.110.226357

18. Ambayya A, Su AT, Osman NH, Nik-Samsudin NR, Khalid K, Chang KM et al. Haematological reference intervals in a multiethnic population. PLoS One. 2014;9(3): e91968. doi:10.1371/journal.pone.0091968


Review

For citations:


Kondratov K.A., Melnik O.V., Petrova T.A., Fedorov A.V., Nikitina I.L., Artemeva I.Yu., Pervunina T.M., Babenko A.Yu., Kostareva A.A., Shlyakhto E.V. LEVELS OF CIRCULATING MICRORNA-21-5P IN CHILDREN WITH TYPE 1 DIABETES MELLITUS. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2017;23(6):597-603. (In Russ.) https://doi.org/10.18705/1607-419X-2017-23-6-597-603

Views: 1472


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)