Possible mechanisms of renal denervation long-term cardiac effects
https://doi.org/10.18705/1607-419X-2019-25-4-423-432
Abstract
Background. The renin-angiotensin-aldosterone system (RAAS) plays a key role in target organ damage in arterial hypertension (HTN), initiating the development of left ventricular hypertrophy (LVH), as well as the heart and vascular wall fibrosis and remodeling. In addition, one of the mechanisms of the cardiovascular disease progression is the angiotensin II-induced inflammation.
Objective. To study the changes in renin, aldosterone and high-sensitive C‑reactive protein (CRP) levels two years after sympathetic renal denervation (RDN), to compare these changes with antihypertensive efficacy of the intervention and LVH regression.
Design and methods. We included 77 patients with drug-resistant hypertension in the absence of contraindications to renal denervation. All patients underwent renal radiofrequency ablation. The active renin, aldosterone and a high-sensitive CRP concentrations assessment, 24‑hour blood pressure (BP) measurement and echocardiography were performed before, at 6 months, one and two years after the intervention.
Results. There was a gradual decrease in CRP levels (the difference was significant after 6 months), aldosterone (significant two years after surgical treatment), and active renin (the difference was the most pronounced after one year). At all follow-up assessments, plasma renin activity correlated with left ventricular mass. At the same time, there were no significant differences between responders and non-responders.
Conclusions. RDN leads to a RAAS activity attenuation, manifested by the decrease in both renin and aldosterone and CRP, probably due to angiotensin II proinflammatory effects reduction. Given these effects are long-term, correlate with LVH degree and unrelated to the BP lowering, a direct cardioprotective effect of renal denervation should be considered.
About the Authors
I. V. ZyubanovaRussian Federation
Irina V. Zyubanova, MD, PhD, Researcher, Department of Arterial Hypertension
111 Kievskaya street, Tomsk, 634012
9032-8376
V. F. Mordovin
Viktor F. Mordovin, MD, PhD, DSc, Professor, Head, Department of Arterial Hypertension
Tomsk
S. E. Pekarskiy
Stanislav E. Pekarskiy, MD, PhD, DSc, Leading Researcher, Department of Arterial Hypertension
Tomsk
T. M. Ripp
Tatyana M. Ripp, MD, PhD, DSc, Leading Researcher, Department of Arterial Hypertension
Tomsk
A. Yu. Falkovskaya
Alla Yu. Falkovskaya, MD, PhD, Senior Research Scientist, Department of Arterial Hypertension
Tomsk
V. A. Lichikaki
Valeria A. Lichikaki, MD, PhD, Researcher, Department of Arterial Hypertension
Tomsk
E. S. Sitkova
Ekaterina S. Sitkova, MD, PhD, Researcher, Department of Arterial Hypertension
Tomsk
A. E. Baev
Andrey E. Baev, MD, PhD, Head, Department of X‑ray Diagnostic and Treatment Methods
Tomsk
A. M. Gusakova
Anna M. Gusakova, Candidate of Pharmaceutical Sciences, Researcher, Department of Functional and Laboratory Diagnostics
Tomsk
T. R. Ryabova
Tamara R. Ryabova, MD, PhD, Researcher, Department of Ultrasound and Functional Diagnostics
Tomsk
References
1. Oganov RG, Maslennikova GY. Demographic trends in the Russian Federation: the impact of cardiovascular disease. Kardiovaskulyarnaya Terapia i Profilaktika = Cardiovascular Therapy and Prevention. 2012;11(1):5–10. In Russian.
2. Organization WH. Global health risks: Mortality and burden of disease attributable to selected major risks. 2009. 62 p. Available from: http://www.who.int/iris/handle/10665/44203
3. Shalnova SA. Epidemiology of arterial hypertension in Russia: portrait of a sick person. Arterial’naya Gipertenziya = Arterial Hypertension. 2008;2(2). In Russian. Available from: http://www.mif-ua.com/archive/article/6262.
4. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE,Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN 2 Trial): a randomised controlled trial. Symplicity HTN 2 Investigators Lancet. 2010;376 (9756):1903–1909. doi:10.1016/S0140-6736(10)62039-9
5. Lichikaki VA, Mordovin VF, Pekarskiy SE, Ripp TM, Falkovskaya AYu, Bayev AE et al. Sibirskiy Meditsinskiy Zhurnal = Siberian Medical Journal. 2016;2:15–18. In Russian. https://doi.org/10.29001/2073-8552-2016-31-2-15-18
6. Wiecek A. Catheter-based renal denervation and renalfunction: no evidence of harm but is there a hope of nephroprotec-tion? Nephrol Dial Transplant. 2017;32(9):1437–1439. doi:10.1093/ndt/gfx227
7. Afanasieva NL, Pekarskiy SE, Mordovin VF, Semke GV, Ripp TM, Lichikaki VA et al. The effects of transcatheter renal denervation on blood pressure and brain structural changes in resistant hypertension. Arterial’naya Gipertenziya = Arterial Hypertension. 2013;19 (3):73–79. In Russian. https://doi.org/10.18705/1607-419X-2013-19-3-256-262
8. Virdis A, Dell’Agnello U, Taddei S. Impact of inflammation on vascular disease in hypertension. Maturitas. 2014;78(3):179–183. doi:10.1016/j.maturitas.2014.04.012
9. Lang RM, Badano LP, Mor-Avi R, Afilalo J, Armstrong A, Ernande L et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16 (3):233–270. http://dx.doi.org/10.1016/j.echo.2014.10.003
10. Olsen F. Inflammatory cellular reaction in hypertensivevascular disease in man. Acta Pathol Microbiol Scand A. 1972;80(2):253–256.
11. Dzielak DJ. Immune mechanisms in experimental and essential hypertension. Am J Physiol. 1991;260(3 Pt 2):R459–R467.
12. Muller DN, Shagdarsuren E, Park JK, Dechend R, Mervaala E,Hampich F et al. Immunosuppressive Treatment Protects Against Angiotensin II–Induced Renal Damage. Am J Pathol. 2002;161 (5):1679–1693. doi:10.1016/S0002-9440(10)64445-8
13. McMaster MD, Kirabo A, Madhur MS, Harrison DG.Inflammation, immunity and hypertensive end-organ damage. Circ Res. 2015;116 (6):1022–1033. doi:10/1161/CIRCRESAHA.116.303697
14. Wassmann S, Nickenig G. Pathophysiological regulation of the AT1 receptor and implications for vascular disease. J HypertensSuppl. 2006;24(1):15–21. doi:10.1097/01.hjh.0000220402.53869.72
15. Barsukov AV, Glukhovskoy DV,Talantseva MS, Bagayeva ZV, Pronina EV, Zobnina MP et al. Left ventricular hypertrophy and renin-angiotensin-aldosterone system: AT1 receptor blockers are in the focus. Sistemnyye Gipertenzii = Systemic Hypertension. 2013;1:88–96. In Russian.
16. Douglas S, Jacoby MD, Daniel J, Rader MD. Renin-angiotensin system and atherothrombotic disease from genes to treatment. Arch Intern Med. 2003;163(10):1155–1164. doi:10.1001/archinte.163.10.1155
17. DiBona GF, Sawin LL, Jones SY. Differentiated sympathetic neural control of the kidney. Am J Physiol. 1996;271 (1Pt2):R84–R90. doi:10.1152/ajpregu.1996.271.1.R84
18. Guo GB, Abboud FM. Angiotensin II attenuates baroreflex control of heart rate and sympathetic activity. Am J Physiol. 1984;246(1Pt2):H80 H89. doi:10.1152/ajpheart.1984.246.1.H80
19. Abboud FM. Effects of sodium, angiotensin, and steroids on vascular reactivity in man. Fed Proc. 1974;33(2):143–149.
20. Sharp TE, Polhemus DJ, Li Z, Spaletra P, Jenkins JS,Reilly JP et al. Renal denervation prevents heart failure prog-ression via inhibition of the renin-angiotensin system. J Am Coll Cardiol. 2018;72(21):2609–2621. doi:10.1016/j.jacc.2018.08.2186
21. Wang L, Lu CZ, Zhang X, Luo D, Zhao B, Yu X et al.The effect of catheter based renal synthetic denervation on renin-angiotensin-aldosterone system in patients with resistant hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41 (1):3–7.
22. Ahmed H, Neuzil P, Skoda J. Renal sympathetic denervation using an irrigated radiofrequency ablation catheter for the management of drug-resistant hypertension. JACC Cardiovasc Interv. 2012;5(7):758–765. doi:10.1016/j.jcin.2012.01.027
23. Ewen S, Cremers B, Meyer MR, Donazzan L, Kinder-mann I, Ukena C et al. Blood pressure changes after catheter-based renal denervation are related to reductions in total peripheral resistance. J Hypertens. 2015;33(12):2519–2525. doi:10.1097/HJH.0000000000000752
24. Ezzahti M, Moelker A, Friesema EC, van der Linde NA,Krestin GP, van den Meiracker AH. Blood pressure and neuro-hormonal responses to renal nerve ablation in treatment-resistanthypertension. J Hypertens. 2014;32(1):135–141. doi:10.1097/HJH.0b013e3283658ef7
25. Hong MN, Li XD, Chen DR, Ruan CC, Xu JZ, Chen J et al. Renal denervation attenuates aldosterone expression and associated cardiovascularpathophysiology in angiotensin II-induced hypertension. Oncotarget. 2016;7(42):67828–67840. doi:10.18632/oncotarget.12182
26. Dörr O, Liebetrau C, Möllmann H, Mahfoud F, Ewen S,Gaede L et al. Beneficial effects of renal sympathetic denervation on cardiovascular inflammation and remodeling in essential hypertension. Clin Res Cardiol. 2015;104(2):175–184. doi:10.1007/s00392-014-0773-4
27. Lang D, Nahler A, Lambert T, Grund M, Kammler J, Kellermair J et al. Anti-Inflammatory effects and prediction of blood pressure response by baseline inflammatory state in catheter-based renal denervation. J Clin Hypertens (Greenwich). 2016;18 (11):1173–1179. doi:10.1111/jch.12844
28. Ageyev FT, Ovchinnikov AG, Serbul VM, Belenkov YuN. Left ventricular hypertrophy: the role of the renin-angiotensin system. Cardiovascular Therapy and Prevention. 2008;7:98–108. In Russian.
Review
For citations:
Zyubanova I.V., Mordovin V.F., Pekarskiy S.E., Ripp T.M., Falkovskaya A.Yu., Lichikaki V.A., Sitkova E.S., Baev A.E., Gusakova A.M., Ryabova T.R. Possible mechanisms of renal denervation long-term cardiac effects. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2019;25(4):423-432. (In Russ.) https://doi.org/10.18705/1607-419X-2019-25-4-423-432