Preview

Артериальная гипертензия

Расширенный поиск

Субклиническое воспаление и окислительный статус у больных с нелеченым сахарным диабетом 2 типа

https://doi.org/10.18705/1607-419X-2008-14-2-151-161

Полный текст:

Аннотация

Воспаление и окислительный стресс играют важную роль в развитии сахарного диабета 2 типа и его осложнений. Воспаление может быть связующим звеном между метаболическими нарушениями и сердечно-сосудистыми заболеваниями. Адипонектин обладает антиатерогенными и инсулинсенситизирующими свойствами. Целью исследования явилось изучение воспалительного и окислительного статуса, уровня адипонектина у больных с нелеченным сахарным диабетом 2 типа в зависимости от основных факторов риска. У 158 пациентов определены показатели воспаления (лейкоциты, интерлейкины ФНО-б, ИЛ-1в, ИЛ-4, ИЛ-6), мочевая кислота, адипонектин, параметры окислительного статуса (малоновый диальдегид, сульфгидрильпые группы). Мужской пол, дислипидемия, большее количество компонентов метаболического синдрома ассоциировались с повышением уровня мочевой кислоты и снижением уровня адипонектина. Нарушения углеводного и липидного обмена ассоциировались с изменениями окислительной активности, не оказывая влияния на антиокислительный ответ. Не обнаружено связи адипонектина с показателями воспаления. Выявлена связь маркеров воспаления и адипонектина с параметрами окислительного стресса. При регрессионном анализе установлено, что показатели воспаления и окислительного статуса не зависят от пола, возраста больных, курения, контроля артериального давления (АД) и определяются параметрами углеводного и липидного обмена.

Об авторах

Ж. Кобалава
Российский университет дружбы ргародов, ГКБ № 64
Россия


С. Виллевальде
Российский университет дружбы ргародов, ГКБ № 64
Россия


Х. Исикова
Российский университет дружбы ргародов, ГКБ № 64
Россия


Н. Гудгалис
Российский университет дружбы ргародов, ГКБ № 64
Россия


Список литературы

1. Pickup J.С., Crook M. A. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41:1241-1248

2.

3. Dandona P., Aljada A., Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4-7.

4.

5. Han T.S., Sattar N., Williams K, et al. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care 2002;25:2016-2021.

6.

7. Duncan B.B., Schmidt M.I., Pankow J.S. et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52:1799-1805.

8.

9. Festa A., D'Agostino R Jr., Tracy R.P. et al. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes. 2002;51:1131-1137.

10.

11. Rotter V., Nagaev I., Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factoralpha, overexpressеd in human fat cells from insulin-resistant subjects. J. Biol. Chem 2003;278;45777-45784.

12.

13. Stern M.P. Diabetes and cardiovascular disease. The "common soil" hypothesis. Diabetes. 1995;44:369-374.

14.

15. Coppack S.W. Pro-inflammatory cytokines and adipose tissue. Proc. Nutr. Soc 2001;60:349-356.

16.

17. Aldhahi W., Hamady O. Adipokines, inflammation, and the endothelium in diabetes. Curr. Diab. Rep. 2003;3:293-298.

18.

19. Dandona P., Aljada A., Chaudhuri A., Bandyopadhyay A. The potential influence of inflammation and insulin resistance on the pathogenesis and treatment of atherosclerosis-related complications in type 2 diabetes. J. Clin. Endocrinol. Metab. 2003;88:2422-2429.

20.

21. Kadowaki Т., Yamauchi T. Adiponectin and adiponectin receptors. Endocr. Rev. 2005;26:439-451.

22.

23. Bruun J.M., Lihn A.S., Verdich С. et al. Regulation of adiponectin by adipose tissuederived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003;285:527-533.

24.

25. Engeli S., Feldpausch M., Corzelniak K. et al. Association between adiponectin and mediators of inflammation in obese women. Diabetes. 2003;52:942-947.

26.

27. Krakoff J., Funahashi Т., Stehouwer C.D. et al. Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care. 2003;26:1745-1751.

28.

29. Schulze M.B., Rimm E.B., Shai I. et al. Relationship between adiponectin and glycemic control, blood lipids, and inflammatory markers in men with type 2 diabetes. Diabetes Care. 2004;27:1680-1687.

30.

31. Salmenniemi U., Zacharova J., Ruotsalainen E. et al. Association of adiponectin level and variants in the adiponectin gene with glucose metabolism, energy expenditure, and cytokines in offspring of type 2 diabetic patients. J Clin Endocrinol Metab. 2005;90:4216-4223.

32.

33. Duncan B.B., Schmidt M.I., Pankow J.S. et al. Adiponectinand the development of type 2 diabetes: the Atherosclerosis Riskin Communities study. Diabetes. 2004;53:2473-2478.

34.

35. Duckworth W.C. Hyperglycemia and cardiovasculardisease. Curr Atheroscler Rep. 2001;3:383-391.

36.

37. Giugliano D., Ceriello A., Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19:257-267.

38.

39. Egan B.M., Greene E.L., Goodfriend T.L. Insulin resistance and cardiovascular disease. Am J Hypertens. 2001;14:116-125.

40.

41. Ginsberg H.N. Insulin resistance and cardiovascular disease. J Clin Invest. 2000;106:453-458.

42.

43. Khamaisi M., Kavel O., Rosenstock M. et al. Effect of inhibition of glutathione synthesis on insulin action: In vivo and in vitro studies using buthionine sulfoximine. Biochem J. 2000;349(3): 579-586.

44.

45. Maechler P., Jornot L., Wollheim С.В.: Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J Biol Chem. 1999;274:27905-2791.

46.

47. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813-820.

48.

49. Evans J. L., Goldfine I.D., Maddux B.A., Grodsky G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003;52: 1-8.

50.

51. Boden G., Shulman G.I. Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest. 2002;32(3):14-23.

52.

53. Itani S.I., Ruderman N.B., Schmieder F., Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and I_B-alpha. Diabetes. 2002;51:2005-2011.

54.

55. Magalang U.J., Rajappan R., Hunter M.G. et al. Adiponectininhibits superoxide generation by human neutrophils. Antioxid Redox Signal. 2006;8:2179-2186.

56.

57. Bays H., Mandarino L., Defronzo R.A. Role of the adipocyte, freefatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus:peroxisomal proliferator-activated receptor agonists provide a rationaltherapeutic approach. J. Clin. Endocrinol. Metab. 2004;89:463-478.

58.

59. Yudkin J.S., Kumari M., Humphries S.E., Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209-214.

60.

61. Yudkin J.S., Stehouwer C.D., Emeis J.J., Coppack S.W. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vase. Biol. 1999;19:972-978.

62.

63. Hak A.E., Stehouwer C.D., Bots M.L. et al. Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler. Thromb. Vase. Biol. 1999;19:1986-1991.

64.

65. Festa A., D'Agostino R.Jr., Howard G. et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102:42-47.

66.

67. Hansson G.K. Immune mechanisms in atherosclerosis. Arteriosclerosis. 1989;9:567-578.

68.

69. Pickup J.C., Mattock M.B., Chusney G.D., Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabeto-logia. 1997;40:1286-1292.

70.

71. Hoekstra Т., Geleijnse J.M., Schouten E.G., Kok F.J. et al. Relationship of C-reactive protein with components of the metabolic syndrome in normal-weight and overweight elderly. Nutr. Metab. Cardiovasc. Dis. 2005;15:270-278.

72.

73. Butler A.E., Janson J., Bonner-Weir S. et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102-110.

74.

75. Donath M.Y., Gross D.J., Cerasi E., Kaiser N. Hyper-glycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes. 1999;48:738-744.

76.

77. Alexandraki K., Piperi Ch., Kalofoutis Ch. et al. Inflammatory Process in Type 2 DiabetesThe Role of Cytokines. Ann. N.Y. Acad. Sci. 2006;1084:89-117.

78.

79. Weisberg S.P., McCann D., Desai M. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 2003;112:1796-1808.

80.

81. Xu H., Barnes G.T., Yang Q. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 2003;112:1821-1830.

82.

83. Wellen K.E., Hotamisligil G.S. Inflammation, stress, and diabetes. J. Clin. Invest. 2005;115:1111-1119.

84.

85. Murdolo G., Smith U. The dysregulated adipose tissue: a connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis. Nutr. Metab. Cardiovasc. Dis. 2006;16(l):35-38.

86.

87. Mandrup-Poulsen T. The role of interleukin-1 in the pathogenesis of IDDM. Diabetologia. 1996;39:1005-1029.

88.

89. Eizirik D.L., Mandrup-Poulsen T. A choice of death-the signaltransduction of immune-mediated beta-cell apoptosis. Diabetologia. 2001;44:2115-2133.

90.

91. Aarnes M., Schonberg S., Grill V. Fatty acids potentiate interleukin-lbeta toxicity in the beta-cell line INS-1E. Biochem. Biophys. Res. Commun. 2002;296:189-193.

92.

93. Yuan M., Konstantopoulos N., Lee J. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science. 2001;293:1673-1677.

94.

95. Kim J.K., Kim Y.J., Fillmore J.J. et al. Prevention offat-induced insulin resistance by salicylate. J. Clin. Invest.2001;108:437-446.

96.

97. Hotamisligil G.S., Arner P., CaroJ.F. et al. Increased adiposetissue expression of tumor necrosis factor-alpha in human obesityand insulin resistance. J. Clin. Invest. 1995;95:2409-2415.

98.

99. Dandona P., Aljada A., Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25:4-7.

100.

101. Fernandez-Real J.M., Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr. Rev. 2003;24:278-301.

102.

103. Ruan H., Lodish H.F. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev. 2003;14:447-455.

104.

105. Senn J.J., Klover P.J., Nowak L.A. et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleu-kin-6-dependent insulin resistance in hepatocytes. J. Biol. Chem. 2003;278:13740-13746.

106.

107. Peraldi P., Spiegrlman B.B. TNF-alpha and insulin resistance: summary and future prospects. Mol. Cell. Biochem. 1998;182:169-175.

108.

109. Mohamed-Ali V., Goodrick S., Bulmer K. et al. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am. J. Physiol. 1999; 277:971-975.

110.

111. Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87-91.

112.

113. Arner P. Regional differences in protein production by human adipose tissue. Biochem. Soc. Trans. 2001;29:72-75.

114.

115. Zhang H.H., Halbleib M., Ahmad F. et al. Tumor necrosis factor-alpha stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes. 2002;51:2929-2935.

116.

117. Stephens J.M., Pekala P.H. Transcriptional repression of the GLUT4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. J. Biol. Chem. 1991;266: 21839-21845.

118.

119. Hotamisligil G.S., Peraldi P., Budavari A. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996;271:665-6.

120.

121. Zeng M., Zhang H., Lowell C., He P. Tumor necrosis factor-alpha-induced leukocyte adhesion and microvessel permeability. Am. J. Physiol. Heart Circ. Physiol. 2002;283:2420-2430.

122.

123. Ashton A.W., Ware G.M., Kaul D.K., Ware J.A. Inhibition of tumor necrosis factor alpha-mediated NFkappaB activation and leukocyte adhesion, with enhanced endothelial apoptosis, by G protein-linked receptor (TP) ligands. J. Biol. Chem. 2003;278:11858-11866.

124.

125. Patel J.N., Jager A., Schalkwijk С. et al. Effects of tumour necrosis factor-alpha in the human forearm: blood flow and endothelial release. Clin. Sci. (Lond.) 2002;103:409-415.

126.

127. Weber C., Negrescu E., Erl W. et al. Inhibitors of protein tyrosine kinase suppress TNFstimulated induction of endothelial cell adhesion molecules. J. Immunol. 1995;155:445-451.

128.

129. Uzui H., Harpf A., Liu M. et al. Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque: role of activated macrophages and inflammatory cytokines. Circulation 2002;106:3024-3030.

130.

131. Fard A., Tuck C.H., Donis J.A. et al. Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 2000;20: 2039-2044.

132.

133. Kamimira D., Ishihara K., Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev. Physiol. Biochem. Pharmacol. 2003;149:1-38.

134.

135. Jones S.A., Horiuchi S., Topley N. et al. The soluble inter-leukin 6 receptor: mechanisms of production and implications in disease. FASEB J. 2001;15:43-58.

136.

137. Pickup J.C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care.2004;27:813-823.

138.

139. Kolb H., Mandrup-Poulsen T. An immune origin of tуpe 2 diabetes? Diabetologia. 2005;48:1038-1050.

140.

141. Kristiansen О.P., Mandrup-Poulsen T. lnterleukin-6 and diabetes, or the indifferent? Diabetes. 2005;54(2): 114-124.

142.

143. Strassmann G., Fong M., Windsor S., Neta R. The role of interleukin-6 in lipopolysaccharideinducedweight loss, hypoglycemia and fibrinogen production, in vivo. Cytokine. 1993;5:285-290.

144.

145. Wang В., Trayhurn P. Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch. 2006;452:418-427.

146.

147. Suganami Т., Nishida J., Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol. 2005;25:2062-2068.

148.

149. Kumada M., Kihara S., Ouchi N. et al Adiponectinspecifically increased tissue inhibitor of metalloproteinase-1through interleukin-10 expression in human macrophages.Circulation. 2004;109:2046-2049.

150.

151. Kadowaki Т., Yamauchi Т., Kubota N. et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and metabolic syndrome. J Clin Invest. 2006;116:1784-1792.

152.

153. Yamauchi Т., Kamon J., Waki H. et al. The fatderived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7:941-946.

154.

155. Ceddia R.B., Somwar R., Maida A. et al. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48:132-139.

156.

157. Fu Y., Luo N., Klein R.L., Garvey W.T. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res. 2005;46:1369-1379.

158.

159. Stefan N., Vozarova В., Funahashi T. et al. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation, and low plasma concentration precedes a decrease in wholebody insulin sensitivity in humans. Diabetes. 2002;51:1884-1888.

160.

161. Ouchi N., Kihara S., Arita Y. et al. Novel modulator for endothelial adhesion molecules adipocyte-derived plasma protein adiponectin. Circulation. 1999;100:2473-2476.

162.

163. Ouchi N., Kihara S., Arita Y. et al. Adiponectin, adipocyte-derived plasma protein, inhibits endothelial NF-кв signaling through a cAMP-dependent pathway. Circulation. 2000;102:1296-1301.

164.

165. Ouchi N., Kihara S., Arita Y. et al. Adipocyte - derived plasma protein, adiponectin, suppress lipid accumulation and class A receptor expression in human monocyte-derived macrophages. Circulation. 2001;103:1057-1063.

166.

167. Arita Y., Kihara S., Ouchi N. et al. Adipocyte-derived plasma protein, adiponectin, acts as a platelet-derived growth-factor-BB-binding protein and regulates growth factor-induced common postreceptor signal in vascular smooth muscle cell. Circulation. 2002;105:2893-2898.

168.

169. Hattori Y., Suzuki M., Hattori K., Kasai K. Globular adiponectin upregulates nitric oxide production in vascular endothelial cells. Diabetologia. 2003;46:1543-1549.

170.

171. Chen H., Montagnani M., Funahashi T. et al. Adiponectin stimulates nitric oxide production in vascular endothelial cells. J Biol Chem. 2003;278:45021-45026.

172.

173. Kobayashi H., Ouchi N., Kihara S. et al. Selectivesuppression of endothelial cell apoptosis by the high molecularweight form of adiponectin. Cli Res 2004;94:27-31.

174.

175. Arita J., Kihara S., Ouchi N. et al. Paradoxal decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79-83.

176.

177. Hotta K., Funahashi Т., Arita Y. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vase Biol. 2000;20:1595-1599.

178.

179. Mallamaci F., Zoccali C., Cuzzola F. et al. Adiponectin in essential hypertension. J Nephrol. 2002; 15: 507-511.

180.

181. Adamczak M., Wiecek A., Funahashi T. et al. Decreased plasma adiponectin concentration in patients with essential hypertension. Am J Hypcrtens. 2003;16:72-75.

182.

183. Kazumi Т., Kawaguchi A., Sakai K. et al. Young men with highnormal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care. 2002;25:971-976.

184.

185. Furuhashi M., Ura N., Hishiura K. et al. Blockade of renin-angiotensin system increases adiponectin concentration in patients with essential hypertension. Hypertension. 2003;42:76-81

186.

187. Furuhashi M., Ura N., Hishiura K. et al. Blockade of renin-angiotensin system increases adiponectin concentration in patients with essential hypertension. Hypertension. 2003;42:76-81.

188.

189. Matsubara M., Maruoka S., Katayose S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-weight and obese women. Eur J Endocrinol. 2002;147:173-180.

190.

191. Nishizawa H., Shimomura I., Kishida K. et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes. 2002; 51: 2734-2741.

192.

193. Herder Ch., Hauner H., Haastert B. et al. Hypoadiponectinemia and Proinflammatory State: Two Sides of the Same Coin? Diabetes Care. 2006;29:1626-1631.

194.


Для цитирования:


Кобалава Ж., Виллевальде С., Исикова Х., Гудгалис Н. Субклиническое воспаление и окислительный статус у больных с нелеченым сахарным диабетом 2 типа . Артериальная гипертензия. 2008;14(2):151-161. https://doi.org/10.18705/1607-419X-2008-14-2-151-161

For citation:


Kobalava Z., Villevalde S.V., Isikova H.V., Gudgalis N. Subclinical inflammation and redox status in untreated patients with type 2 diabetes mellitus . "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2008;14(2):151-161. (In Russ.) https://doi.org/10.18705/1607-419X-2008-14-2-151-161

Просмотров: 96


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)