Preview

Артериальная гипертензия

Расширенный поиск

Роль неэтерифицированных жирных кислот в патогенезе сердечно-сосудистых заболеваний

https://doi.org/10.18705/1607-419X-2010-16-1-93-103

Полный текст:

Аннотация

Представлен обзор данных литературы о роли неэтерифицированных жирных кислот (НЭЖК) в патогенезе
сердечно-сосудистых заболеваний. НЭЖК - это карбоновые кислоты с длиной алифатической цепи не менее 4-х
атомов углерода, находящиеся в организме в свободной форме (не этерифицированы). Бόльшая часть НЭЖК плаз-
мы образуется в результате липолиза триглицеридов жировой ткани, другим источником могут служить богатые
триглицеридами липопротеины - хиломикроны, липопротеины очень низкой плотности, липопротеины проме-
жуточной плотности.
Повышенная концентрация НЭЖК в плазме - фактор риска сердечно-сосудистых заболеваний и сахарного
диабета 2 типа, независимый фактор риска гипертензии и внезапной смерти. Повышение концентрации НЭЖК в
плазме наблюдается при атеросклерозе, остром инфаркте миокарда, сахарном диабете, ожирении, гипертензии и
часто при метаболическом синдроме. Вероятной причиной накопления НЭЖК в плазме может быть переедание при
малой физической активности, что приводит к увеличению массы жировой ткани, усилению липолиза и повышению
концентрации НЭЖК в плазме.
Обсуждается роль повышенных концентраций НЭЖК в плазме при абдоминальном ожирении, атерогенной
дислипидемии, инсулинорезистентности и сахарном диабете второго типа, эндотелиальной дисфункции, сосудистом
воспалении и атеросклерозе, гипертензии, ишемической болезни сердца, нарушениях ритма и внезапной смерти, а
также возможные способы коррекции повышенных концентраций НЭЖК в плазме.

Об авторах

М. В. Цветкова
ФГУЗ «Всероссийский центр экстренной и радиационной медицины имени А.М. Никифорова» МЧС России
Россия


В. Н. Хирманов
ФГУЗ «Всероссийский центр экстренной и радиационной медицины имени А.М. Никифорова» МЧС России
Россия


Н. Н. Зыбина
ФГУЗ «Всероссийский центр экстренной и радиационной медицины имени А.М. Никифорова» МЧС России
Россия


Список литературы

1. Carlsson M., Wessman Y., Almgren P. et al. High levels of nonesterifi ed fatty acids are associated with increased familial risk of cardiovascular disease // Arterioscler. Thromb. Vasc. Biol. - 2000. - Vol. 20, № 6. - P. 1588-1594.

2.

3. Taniguchi A., Sakai M., Teramura S. et al. Serum nonesterifi ed fatty acids are related with carotid atherosclerotic plaque in nonobese nonhypertensive Japanese type 2 diabetic patients (Letter) // Diabetes Care. - 2001. - Vol. 24, № 8. - P. 1505-1507.

4.

5. Kurien V.A., Oliver M.F. Free fatty acids during acute myocardial infarction // Prog. Cardiovasc. Dis. - 1971. - Vol. 13, № 4. - P. 361-337.

6.

7. Reaven G.M., Hollenbeck C., Jeng C.-Y. et al. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 hours in patients with NIDDM // Diabetes. - 1988. - Vol. 37, № 8. - P. 1020-1024.

8.

9. Boden G. Obesity and free fatty acids (FFA) // Endocrinol. Metab. Clin. North. Am. - 2008. - Vol. 37, № 3. - P. 635- 646.

10.

11. Fagot-Campagna A., Balkau B., Simon D. et al. High free fatty acid concentration: an independent risk factor for hypertension in the Paris Prospective Study // Int. J. Epid. - 1998. - Vol. 27, № 5. - P. 808-813.

12.

13. Delarue J., Magnan C. Free fatty acids and insulin resistance // Curr. Opin. Clin. Nutr. Metab. Care. - 2007. - Vol. 10, № 2. - P. 142-148.

14.

15. Yli-Jama P., Meyer H.E., Ringstad J., Pedersen J.I. Serum free fatty acid pattern and risk of myocardial infarction: a case-control study //J. Intern. Med. - 2002. - Vol. 251, № 1. - P. 19-28.

16.

17. Van der Vusse G. J. Albumin as fatty acid transporter // Drug Metab. Pharmacokinet. - 2009. - Vol. 24, № 4. - P. 300-307.

18.

19. Spector A. A. Plasma lipid transport // J. Clin. Physiol. Biochem. - 1984. - Vol. 2, № 2-3. - P. 123-134.

20.

21. Hirsch D., Stahl A., Lodish H.F. A family of fatty acid transporters conserved from mycobacterium to man // Proc. Natl. Acad. Sci. USA. - 1998. - Vol. 95, № 15. - P. 8625-8629.

22.

23. Kampf J.P., Kleinfeld A.M. Is membrane transport of FFA mediated by lipid, protein, or both? // Physiology (Bethesda). - 2007. - Vol. 22, № 1. - P. 7-14.

24.

25. Veerkamp J.H. Fatty acid transport and fatty acid-binding proteins // Proc. Nutr. Soc. - 1995. - Vol. 54, № 1. - P. 23-37.

26.

27. Hamilton J. A. Fatty acid transport: diffi cult or easy // J. Lipid Res. - 1998. - Vol. 39, № 3. - P. 467-481.

28.

29. Hron W.T., Menahan L.A. A sensitive method for the determination of free fatty acids in plasma // J. Lipid Res. - 1981. - Vol. 22, № 2. - P. 377-381.

30.

31. Tserng K.Y., Kliegman R.M., Miettinen E.L. et al. A rapid, simple, and sensitive procedure for the determination of free fatty acids in plasma using glass capillary column gas-liquid chromatography // J. Lipid Res. - 1981. - Vol. 22, № 5. - P. 852-858.

32.

33. Puttmann M., Krug H., von Ochsenstein E. et al. Fast HPLC determination of serum free fatty acids in the picomole range // Clin. Chem. - 1993. - Vol. 39, № 5. - P. 825-832.

34.

35. Hernandez-Perez J.M., Cabre E., Fluvia L., Motos A. et al. Improved method for gas chromatographic-mass spectrometric analysis of 1-(13)C-labeled long-chain fatty acids in plasma samples // Clin. Chem. - 2002. - Vol. 48, № 6, Pt. 1. - P. 906-912.

36.

37. Naslund B.M., Bernstrom K., Lundin A., Arner P. Free fatty acid determination by peroxidase catalysed luminol chemiluminescence //J. Biolumin. Chemilumin. - 1989. - Vol. 3, № 3. - P. 115-124.

38.

39. Hosaka K., Kikuchi T., Mitsuhida N., Kawaguchi A. A new colorimetric method for the determination of free fatty acids with acyl-CoA synthetase and acyl-CoA oxidase // J. Biochem. - 1981. - Vol. 89 , № 6. - P. 1799-1803.

40.

41. Gerich J., Haymond М. A microfl uorometric method for the determination of free fatty acids in plasma // J. Lipid Res. - 1983. - Vol. 24, № 1. - P. 96-99.

42.

43. Kiziltunc A., Akcay F. An enzymatic method for the determination of free fatty acids in serum/plasma // Clin. Chem. Lab. Med. - 1998. - Vol. 36, № 2. - P. 83-86.

44.

45. Miles J.M., Ellman M.G., McClean K.L. et al. Validation of a new method for determination of free fatty acid turnover // Am. J. Physiol. - 1987. - Vol. 252, № 3, Pt. 1. - P. E431-E438.

46.

47. Patterson B.W., Zhao G., Elias N. et al. Validation of a new procedure to determine plasma fatty acid concentration and isotopic enrichment //J. Lipid Res. - 1999. - Vol. 40, № 11. - P. 2118-2124.

48.

49. Richieri G.V., Ogata R.T., Kleinfeld A.M. A fl uorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids // J. Biol. Chem. - 1992. - Vol. 267, № 33. - P. 23495-23501.

50.

51. Richieri G.V., Ogata R.T., Kleinfeld A.M. The measurement of free fatty acid concentration with the fl uorescent probe ADIFAB: a practical guide for the use of the ADIFAB probe // Mol. Cell Biochem. - 1999. - Vol. 192, № 1-2. - P. 87-94.

52.

53. Назаренко Г.И., Кишкун А.А. Клиническая оценка результатов лабораторных исследований. - М.: Медицина, 2006. - 542 с.

54.

55. Evans D.J., Murray R., Kissebah A.H. Relationship between skeletal muscle insulin resistance, insulin mediated glucose disposal and insulin binding: effects of obesity and body fat topography // J. Clin. Invest. - 1984. - Vol. 74, № 4. - P. 1515-1525.

56.

57. Isomaa B., Almgren P., Tuomi T. et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome // Diabetes Care. - 2001. - Vol. 24, № 4. - P. 683-689.

58.

59. Casassus P., Fontbonne A., Thibult N. et al. Upper-body fat distribution: a hyperinsulinemia-independent predictor of coronary heart disease mortality: the Paris Prospective Study // Arterioscler. Thromb. - 1992. - Vol. 12, № 12. - P. 1387-1392.

60.

61. Hubert H.B., Feinleib M., McNamara P.M. et al. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study // Circulation. - 1983. - Vol. 67, № 5. - P. 968-977.

62.

63. McGill H.C.Jr., McMahan C.A., Herderick E.E. et al. Obesity accelerates the progression of coronary atherosclerosis in young men // Circulation. - 2002. - Vol. 105, № 23. - P. 2712-2718.

64.

65. Kenchaiah S., Evans J.C., Levy D. et al. Obesity and the risk of heart failure // N. Engl. J. Med. - 2002. - Vol. 347, № 5. - P. 305-313.

66.

67. Mittelman S.D., van Citters G.W., Kirkman E.L., Bergman R.N. Extreme insulin resistance of the central adipose depot in vivo // Diabetes. - 2002. - Vol. 51, № 3. - P. 755-761.

68.

69. Hoffstedt J., Wahrenberg H., Thorne A., Lonnqvist F. The metabolic syndrome is related to beta 3-adrenoceptor sensitivity in visceral adipose tissue // Diabetologia. - 1996. - Vol. 39, № 7. - P. 838-844.

70.

71. Jensen M.D. Role of body fat distribution and the metabolic complications of obesity // J. Clin. Endocrinol. Metab. - 2008. - Vol. 93, № 11 (Suppl. 1). - P. s57-s63.

72.

73. Nielsen S., Guo Z., Johnson C.M. et al. Splanchnic lipolysis in human obesity // J. Clin. Invest. - 2004. - Vol. 113, № 11. - P. 1582-1588.

74.

75. Sniderman A.D., Scantlebury T., Cianfl one K. Hypertriglyceridemic hyperapob: the unappreciated atherogenic dyslipoproteinemia in type 2 diabetes mellitus // Ann. Intern. Med. - 2001. - Vol. 135, № 6. - P. 447-459.

76.

77. Lewis G. F., Uffelman K.D., Szeto L.W. et al. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans // J. Clin. Invest. - 1995. - Vol. 95, № 1. - P. 158-166.

78.

79. Olsson U., Egnell A.-C., Rodriguez Lee M. et al. Changes in matrix proteoglycans induced by insulin and fatty acids in hepatic cells may contribute to dyslipidemia of insulin resistance // Diabetes. - 2001. - Vol. 50, № 9. - P. 2126-2132.

80.

81. Duez H., Lamarche B., Valero R. et al. Both intestinal and hepatic lipoprotein production are stimulated by an acute elevation of plasma free fatty acids in humans // Circulation. - 2008. - Vol. 117. - P. 2369-2376.

82.

83. Murakami T., Michelagnoli S., Longhi R. et al. Triglycerides are major determinants of cholesterol esterifi cation/transfer and HDL remodeling in human plasma // Arterioscler. Thromb. Vasc. Biol. - 1995. - Vol. 15, № 11. - P. 1819-1828.

84.

85. Brinton E.A., Eisenberg S., Breslow J.L. Increased apo A-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein- cholesterol levels with or without hypertriglyceridemia // J. Clin. Invest. - 1991. - Vol. 87, № 2. - P. 536-544.

86.

87. Sniderman A., Thomas D., Marpole D. et al. Low density lipoprotein: a metabolic pathway for return of cholesterol to the splanchnic bed //J. Clin. Invest. - 1978. - Vol. 61, № 4. - P. 867-873.

88.

89. Nordestgaard B.G., Tybjaerg-Hansen A., Lewis B. Infl ux in vivo of low density, intermediate density, and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits. Roles of plasma concentrations, extent of aortic lesion, and lipoprotein particle size as determinants // Arterioscler. Thromb. - 1992. - Vol. 12, № 1. - P. 6-18.

90.

91. Wilding J.P. The importance of free fatty acids in the development of type 2 diabetes // Diabet. Med. - 2007. - Vol. 24, № 9. - P. 934-945.

92.

93. Charles M.A., Eschwege N., Thibault N. et al. The role of nonesterifi ed fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study // Diabetologia. - 1997. - Vol. 40, № 9. - P. 1101-1106.

94.

95. Pankow J.S., Duncan B.B., Schmidt M.I. et al. Fasting plasma free fatty acids and risk of type 2 diabetes. The Atherosclerosis Risk in Communities study // Diabetes Care. - 2004. - Vol. 27, № 1. - P. 77-82.

96.

97. Paolisso G., Tataranni P.A., Foley J.E. et al. A high concentration of fasting plasma non-esterifi ed fatty acids is a risk factor for the development of NIDDM // Diabetologia. - 1995. - Vol. 38, № 10. - P.1213-1217.

98.

99. Dresner A., Laurent D., Marcucci M. et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity // J. Clin. Invest. - 1999. - Vol. 103, № 2. - P. 253-259.

100.

101. Boden G., Chen X., Ruiz J. et al. Mechanisms of fatty acid-induced inhibition of glucose uptake // J. Clin. Invest. - 1994. - Vol. 93, № 6. - P. 2438-2446.

102.

103. Roden M., Price T.B., Perseghin G. et al. Mechanism of free fatty acid-induced insulin resistance in humans // J. Clin. Invest. - 1996. - Vol. 97, № 12. - P. 2859-2865.

104.

105. Steinberg H.O., Baron A.D. Vascular function, insulin resitance and fatty acids // Diabetologia. - 2002. - Vol. 45, № 5. - P. 623-634.

106.

107. Kashyap S., Belfort R., Gastadelli A. et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes // Diabetes. - 2003. - Vol. 52, № 10. - P. 2461-74.

108.

109. Bajaj M., Suraamornkul S., Romanelli A. et al. Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long-chain fatty acyl-coAs and insulin action in type 2 diabetic patients // Diabetes. - 2005. - Vol. 54, № 11. - P. 3148-3153.

110.

111. Randle P.J., Garland P.B., Newsholme E.A., Hales C.N. The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus // Ann. NY Acad. Sci. - 1965. - Vol. 131, № 1. - P. 324-333.

112.

113. Griffi n M.E., Marcucci M.J., Cline G.W. et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase Cθ and alterations in the insulin signaling cascade // Diabetes. - 1999. - Vol. 48, № 6. - P. 1270-1274.

114.

115. Shulman G.I. Cellular mechanisms of insulin resistance // J. Clin. Invest. - 2000. - Vol. 106, № 2. - P. 171-176.

116.

117. Cline G.W., Petersen K.F., Krssak M. et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes // N. Engl. J. Med. - 1999. - Vol. 341, № 4. - P. 240-246.

118.

119. Yu C., Chen Y., Cline G.W. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle // J. Biol. Chem. - 2002. - Vol. 277, № 52. - P. 50230-50236.

120.

121. Bhattacharya S., Dey D., Roy S.S. Molecular mechanism of insulin resistance // J. Biosci. - 2007. - Vol. 32, № 2. - P. 405-413.

122.

123. Abbasi F., McLaughlin T., Lamendola C., Reaven G.M. The relationship between glucose disposal in response to physiological hyperinsulinemia and basal glucose and free fatty acid concentrations in healthy volunteers // J. Clin. Endocrinol. Metab. - 2000. - Vol. 85, № 3. - P. 1251-1254.

124.

125. Crespin S.R., Greenough W.B., Steinberg D. Stimulation of insulin secretion by long-chain free fatty acids // J. Clin. Invest. - 1973. - Vol. 52, № 8. - P. 1979-1984.

126.

127. Boden G. Free fatty acids and insulin secretion in humans // Curr. Diab. ReP. - 2005. - Vol. 5, № 3. - P. 167-70.

128.

129. Lee Y., Hirose H., Ohneda M. et al. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships // Proc. Natl. Acad. Sci. USA. - 1994. - Vol. 91, № 23. - P. 10878-10882.

130.

131. Unger R.H., Zhou Y-T. Lipotoxity of β-cells in obesity and other causes of fatty acid spillover // Diabetes. - 2001. - Vol. 50 (Suppl. 1). - P. S118-S1121.

132.

133. Maedler K., Spinas G.A., Dyntar D. et al. Distinct effects of saturated and monounsaturated fatty acids on .-cell turnover and function // Diabetes. - 2001. - Vol. 50, № 1. - P. 69-76.

134.

135. de Vries J.E., Vork M.M., Roemen T.H. et al. Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes // J. Lipid Res. - 1997. - Vol. 38, № 7. - P. 1384- 1394.

136.

137. Lupi R., Dotta F., Marselli L. et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated // Diabetes. - 2002. - Vol. 51, № 5. - P. 1437-1442.

138.

139. Shimabukuro M., Zhou Y.-T., Levi M., Unger R.H. Fatty acid induced . cell apoptosis. А link between obesity and diabetes // Proc. Natl. Acad. Sci. USA. - 1998. - Vol. 95, № 5. - P. 2498-2502.

140.

141. Lin K.T., Xue J.Y., Nomen M. et al. Peroxynitrite-induced apoptosis in HL-60 cells // J. Biol. Chem. - 1995. - Vol. 270, № 28. - P. 16487- 16490.

142.

143. Shimabukuro M., Ohneda M., Lee Y., Unger R.H. Role of nitric oxide in obesity-induced β-cell disease // J. Clin. Invest. - 1997. - Vol. 100, № 2. - P. 290-295.

144.

145. Boden G., Chen X., Capulong E., Mozzoli M. Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes // Diabetes. - 2001. - Vol. 50, № 4. - P. 810-816.

146.

147. Muniyappa R., Iantorno M., Quon M.J. An integrated view of insulin resistance and endothelial dysfunction // Endocrinol. Metab. Clin. North. Am. - 2008. - Vol. 37, № 3. - P. 685.

148.

149. Moncada S., Higgs A. The L-arginine-nitric oxide pathway // N.Engl. J. Med. - 1993. - Vol. 329, № 27. - P. 2002-2012.

150.

151. Radomski M.W., Palmer R.M., Moncada S. The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium // Biochem. Biophys. Res. Commun. - 1987. - Vol. 148, № 3. - P. 1482-1489.

152.

153. Kubes P., Suzuki M., Granger D.N. Nitric oxide: an endogenous modulator of leukocyte adhesion // Proc. Natl. Acad. Sci. USA. - 1991. - Vol. 88, № 11. - P. 4651-4655.

154.

155. Sarkar R., Meinberg E.G., Stanley J.C. et al. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells // Circ. Res. - 1996. - Vol. 78, № 2. - P. 225-230.

156.

157. Cook S., Hugli O., Egli M. et al. Clustering of cardiovascular risk factors mimicking the human metabolic syndrome X in eNOS null mice // Swiss Med. Wkly. - 2003. - Vol. 133, № 25-26. - P. 360-363.

158.

159. Montagnani M., Ravichandran L.V., Chen H. et al. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells // Mol. Endocrinol. - 2002. - Vol. 16, № 8. - P. 1931-1942.

160.

161. Kuboki K., Jiang Z.Y., Takahara N. et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specifi c vascular action of insulin // Circulation. - 2000. - Vol. 101, № 6. - P. 676-681.

162.

163. Steinberg H.O., Tarshoby M., Monestel R. et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation //J. Clin. Invest. - 1997. - Vol. 100, № 5. - P. 1230-1239.

164.

165. Lind L., Fugmann A., Branth S. et al. The impairment in endothelial function induced by non-esterifi ed fatty acids can be reversed by insulin // Clin. Sci. (Lond). - 2000. - Vol. 99, № 3. - P. 169-174.

166.

167. Johnstone M.T., Creager S.J., Scales K.M. et al. Impaired endothelium- dependent vasodilation in patients with insulin-dependent diabetes mellitus // Circulation. - 1993. - Vol. 88, № 6. - P. 2510-2516.

168.

169. Steinberg H.O., Paradisi G., Hook G. et al. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production // Diabetes. - 2000. - Vol. 49, № 7. - P. 1231-1238.

170.

171. Symons J.D., McMillin S.L., Riehle C. et al. Contribution of insulin and akt1 signaling to endothelial nitric oxide synthase in the regulation of endothelial function and blood pressure // Circ. Res. - 2009. - Vol. 104, № 9. - P. 1085-1094.

172.

173. Xiao-Yun X., Zhuo-Xiong C., Min-Xiang L. Ceramide mediates inhibition of the AKT/eNOS signaling pathway by palmitate in human vascular endothelial cells // Med. Sci. Monit. - 2009. - Vol. 15, № 9. - P. BR254-BR261.

174.

175. Ferrannini E., Barrett E.J., Bevilacqua S. et al. Effect of free fatty acids on blood amino acid levels in human // Am. J. Physiol. - 1986. - Vol. 250, № 6, Pt. 1. - P. E686-E694.

176.

177. Inoguchi T., Li P., Umeda F. et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells // Diabetes. - 2000. - Vol. 49, № 11. - P. 1939-1945.

178.

179. Chinen I., Shimabukuro M., Yamakawa K. et al. Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese zucker diabetic fatty rats // Endocrinology. - 2007. - Vol. 148, № 1. - P. 160-165.

180.

181. Tripathy D., Mohanty P., Dhindsa S. et al. Elevation of free fatty acids induces infl ammation and impairs vascular reactivity in healthy subjects // Diabetes. - 2003. - Vol. 52, № 12. - P. 2882-2887.

182.

183. Toborek M., Hennig B. Fatty acid-mediated effects on the glutathione redox cycle in cultured endothelial cells // Am. J. Clin. Nutr. - 1994. - Vol. 59, № 1. - P. 60-65.

184.

185. Staiger H., Staiger K., Stefan N. et al. Palmitate-induced interleukin- 6 expression in human coronary artery endothelial cells // Diabetes. - 2004. - Vol. 53, № 12. - P. 3209-3216.

186.

187. Bates E. J., Ferrante A., Smithers L. et al. Effect of fatty-acid structure on neutrophil adhesion, degranulation and damage to endothelial cells // Atherosclerosis. - 1995. - Vol. 116, № 2. - P. 247-259.

188.

189. Young V. M., Toborek M., Yang F. et al. Effect of linoleic acid on endothelial cell infl ammatory mediators // Metabolism. - 1998. - Vol. 47, № 5. - P. 566-572.

190.

191. Graf K., Xi X.P., Yang D. et al. Mitogen-activated protein kinase activation is involved in platelet-derived growth factor-directed migration by vascular smooth muscle cells // Hypertension. - 1997. - Vol. 29, № 1, Pt. 2. - P. 334-339.

192.

193. Lu G., Morinelli T.A., Meier K.A. et al. Oleic acid-induced mitogenic signaling in vascular smooth muscle cells: a role for protein kinase C // Circ Res. - 1996. - Vol. 79, № 3. - P. 611-619.

194.

195. Su J., Tian H., Liu R., Liang J. Inhibitive effects of glucose and free fatty acids on proliferation of human vascular endothelial cells in vitro // Chin. Med. J. - 2002. - Vol. 115, № 10. - P. 1486-1490.

196.

197. Artwohl M., Roden M., Waldhausl W. et al. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells // FASEB J. - 2004. - Vol. 18, № 1. - P. 146-148.

198.

199. Staiger К., Staiger Н., Weigert С. et al. Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-κB activation // Diabetes. - 2006. - Vol. 55, № 11. - P. 3121-3126.

200.

201. Endresen M.J., Tosti E., Heimli H. et al. Effects of free fatty acids found increased in women who develop pre-eclampsia on the ability of endothelial cells to produce prostacyclin, cGMP and inhibit platelet aggregation // Scand. J. Lab. Invest. - 1994. - Vol. 54, № 7. - P. 549-557.

202.

203. Hurt-Camejo E., Olsson U., Wiklund O. et al. Cellular consequences of the association of apoB lipoproteins with proteoglycans. Potential contribution to atherogenesis // Arterioscler. Thromb. Vasc. Biol. - 1997. - Vol. 17, № 6. - P. 1011-1017.

204.

205. Olsson U., Bondjers G., Camejo G. Fatty acids modulate the composition of extracellular matrix in cultured human arterial smooth muscle 103 Том 16, № 1 / 2010 cells by altering the expression of genes for proteoglycan core proteins // Diabetes. - 1999. - Vol. 48, № 3. - P. 616-622.

206.

207. Hawkins M., Barzilai N., Liu R. et al. Role of the glucosamine pathway in fat-induced insulin resistance // J. Clin. Invest. - 1997. - Vol. 99, № 9. - P. 2173-2182.

208.

209. Ramasamy S., Boissenault G.A., Lipke D.W., Hennig B. Proteoglycans and endothelial barrier function: effect of linoleic acid exposure to porcine pulmonary endothelial cells // Atherosclerosis. - 1993. - Vol. 103, № 2. - P. 279-290.

210.

211. Hennig B., Shasby D.M., Spector A.A. Exposure to fatty acid increases human low density lipoprotein transfer across cultured endothelial monolayers // Circ. Res. - 1985. - Vol. 57, № 5. - P. 776-80.

212.

213. Egan B.M., Shork N.J., Weder A.B. Regional hemodynamic abnormalities in overweight men: focus on - adrenergic vascular responses //Am. J. Hypertens. - 1989. - Vol. 2, № 6, Pt. 1. - P. 428-434.

214.

215. Haastrup A., Stepniakowski K., Goodfriend T., Egan B. Intralipid enhances alpha 1-adrenergic receptor mediated pressor sensitivity // Hypertension. - 1998. - Vol. 32, № 4. - P. 693-698.

216.

217. Kelly R.A., O'Hara D.S., Micth W.E., Smith T.W. Identifi cation of Na-K-ATPase inhibitors in human plasma as non-esterifi ed fatty acids and lysophospholipids // J. Biol. Chem. - 1986. - Vol. 261, № 25. - P. 11704-11711.

218.

219. Ordway R.W., Singer J.J., Walsh J.V.J. Direct regulation of ion channels by fatty acids // Trends Neurosci. - 1991. - Vol. 14, № 3. - P. 96-100.

220.

221. Wilde D.W., Massey K.D., Walker G.K. et al. High-fat diet elevates blood pressure and cerebrovascular muscle Ca2+ current // Hypertension. - 2000. - Vol. 35, № 3. - P. 832-837.

222.

223. Adam O., Wolfram G., Zollner N. Prostaglandin formation in man during intake of different amount of linoleic acid in formula diets //Ann. Nutr. Metab. - 1982. - Vol. 26, № 5. - P. 315-323.

224.

225. Grekin R.J., Vollmer A.P., Sider R.S. Pressor effects of portal venous oleate infusion. A proposed mechanism for obesity hypertension // Hypertension. - 1995. - Vol. 26, № 1. - P. 193-198.

226.

227. Pirro M., Mauriege P., Tchernof A. et al. Plasma free fatty acid levels and the risk of ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study // Atherosclerosis. - 2002. - Vol. 160, № 2. - P. 377-378.

228.

229. Apple F.S. et al Unbound free fatty acid concentrations are increased in cardiac ischemia // Clin. Proteomics. - 2004. - Vol. 1, № 1. - P. 41-44.

230.

231. Aras O., Dilsizian V. Targeting ischemic memory // Curr. Opin. Biotechnol. - 2007. - Vol. 18, № 1. - P. 46-51.

232.

233. Fang K.-M., Lee A.-S., Su M.-J. Free fatty acids act as endogenous ionophores, resulting in Na+ and Ca2+ infl ux and myocyte apoptosis // Cardiovasc. Res. - 2008. - Vol. 78, № 3. - P. 533-545.

234.

235. Leichman J.G., Aguilar D., King T. M. et al. Association of plasma free fatty acids and left ventricular diastolic function in patients with clinically severe obesity // Am. J. Clin. Nutr. - 2006. - Vol. 84, № 2. - P. 336-333.

236.

237. Hendrickson S.C., St Louis J.D., Abdel-aleem S. Free fatty acid metabolism during myocardial ischemia and reperfusion // Mol. Cell Biochem. - 1997. - Vol. 166, № 1-2. - P. 85-94.

238.

239. Yamagishi K., Nettleton J.A., Folsom A.R., and ARIC Study Investigators. Plasma fatty acid composition and incident heart failure in middleaged adults: the Atherosclerosis Risk in Communities (ARIC) Study //Am. Heart J. - 2008. - Vol. 156, № 5. - P. 965-974.

240.

241. Pilz S., Scharnagl H., Tiran B. et al. Elevated plasma free fatty acids predict sudden cardiac death: a 6,85-year follow-up of 1335 patients after coronary angiography // Eur. Heart J. - 2007. - Vol. 28, № 22. - P. 2763-2769.

242.

243. Pilz S., Scharnagl H., Tiran B. et al. Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease // J. Clin. Endocrinol. Metab. - 2006. - Vol. 91, № 7. - P. 2542-2547.

244.

245. Tansey M.J., Opie L.H. Relation between plasma free fatty acids and arrhythmias within the fi rst twelve hours of acute myocardial infarction // Lancet. - 1983. - Vol. 2, № 8347. - P. 419-422.

246.

247. Oliver M.F. Prevention of ventricular fi brillation during acute myocardial ischemia: control of free fatty acids // J. Cardiovasc. Pharmacol. Ther. - 2001. - Vol. 6, № 3. - P. 213-7.

248.

249. Oliver M.F. Sudden cardiac death: the lost fatty acid hypothesis // QJM. - 2006. - Vol. 99, № 10. - P. 701-709.

250.

251. Paolisso G., Gualdiero P., Manzella D. et al. Association of fasting plasma free fatty acid concentration and frequency of ventricular premature complexes in nonischemic non-insulin-dependent diabetic patients // Am.J. Cardiol. - 1997. - Vol. 80, № 7. - P. 932-937.

252.

253. Jouven X., Charles M.A., Desnos M., Ducimetiere P. Circulating nonesterifi ed fatty acid level as a predictive risk factor for sudden death in the population // Circulation. - 2001. - Vol. 104, № 7. - P. 756-761.

254.

255. Huang J.M., Xian H., Bacaner M. Long chain fatty acids activate calcium channels in ventricular myocytes // Proc. Natl. Acad. Sci. USA. - 1992. - Vol. 89, № 14. - P. 6452-6456.

256.

257. Kim D., Duff R.A. Regulation of K+ channels in cardiac myocytes by free fatty acids // Circ. Res. - 1990. - Vol. 67, № 4. - P. 1040-1046.

258.

259. Marfella R., De Angelis L., Nappo F. et al. Elevated plasma fatty acid concentrations prolong cardiac repolarization in healthy subjects // Am.J. Clin. Nutr. - 2001. - Vol. 73, № 1. - P. 27-30.

260.

261. Paolisso G., Manzella D., Rizzo M.R. et al. Elevated plasma free fatty acid concentrations stimulate the cardiac autonomic nervous system in healthy subjects // Am. J. Clin. Nutr. - 2000. - Vol. 72, № 3. - P. 723-730.

262.

263. Manzella D., Barbieri M., Rizzo M.R. et al. Role of free fatty acids on cardiac autonomic nervous system in noninsulin-dependent diabetic patients: effects of metabolic control // J. Clin. Endocrinol. Metab. - 2001. - Vol. 86, № 6. - P. 2769-2774.

264.

265. Staels B., Fruchart J.-C. Therapuetic roles of peroxisome proliferator- activated receptor agonists // Diabetes. - 2005. - Vol. 54. - P. 2460-2470.

266.

267. Ghazzi M.N., Perez J.E., Antonucci T.K. et al. Cardiac and glycemic benefi ts of troglitazone treatment in NIDDM: the Troglitazone Study Group //Diabetes. - 1997. - Vol. 46, № 3. - P. 433-439.

268.

269. Maggs D.G., Buchanan T.A., Burant C.F. et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, doubleblind, placebo-controlled trial // Ann. Intern. Med. - 1998. - Vol. 128, № 3. - P.176-185.

270.

271. Boden G., Zhang M. Recent fi ndings concerning thiazolidinediones in the treatment of diabetes // Expert Opin. Investig. Drugs. - 2006. - Vol. 15, № 3. - P. 243-250.

272.


Для цитирования:


Цветкова М.В., Хирманов В.Н., Зыбина Н.Н. Роль неэтерифицированных жирных кислот в патогенезе сердечно-сосудистых заболеваний. Артериальная гипертензия. 2010;16(1):93-103. https://doi.org/10.18705/1607-419X-2010-16-1-93-103

For citation:


Tsvetkova M.V., Khirmanov V.N., Zybina N.N. The role of nonesterified fatty acids in pathogenesis of cardiovascular diseases. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2010;16(1):93-103. (In Russ.) https://doi.org/10.18705/1607-419X-2010-16-1-93-103

Просмотров: 101


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)