Preview

Артериальная гипертензия

Расширенный поиск

Возможности использования микроРНК в качестве биомаркера при диагностике инсульта

https://doi.org/10.18705/1607-419X-2018-24-5-521-530

Полный текст:

Аннотация

Острое инсульт-индуцированное повреждение эндотелиальных клеток приводит к нарушению мозговой микроциркуляции и значительному повреждению ткани головного мозга. Несмотря на недавний прогресс терапии, способствующий повышению выживаемости после инсульта, диагностические подходы, направленные на раннюю точную идентификацию патогенетического подтипа, остаются ограниченными. МикроРНК являются перспективными кандидатами на роль новых биомаркеров инсульта. Настоящая статья посвящена обзору данных о связи инсульта с изменением уровней определенных циркулирующих микроРНК и перспективах их диагностического использования.

Об авторах

М. П. Топузова
Федеральное государственное бюджетное учреждение   «Национальный медицинский исследовательский центр  имени B. A. Алмaзoвa» Министерства здравоохранения   Российской Федерации.
Россия

Топузова Мария Петровна — кандидат медицинских наук, доцент кафедры неврологии и психиатрии, старший научный сотрудник НИЛ цереброваскулярной патологии НИО неврологии и нейрореабилитации. 

ул. Аккуратова, д. 2, Санкт-Петербург, 197341. 



Т. М. Алексеева
Федеральное государственное бюджетное учреждение   «Национальный медицинский исследовательский центр  имени B. A. Алмaзoвa» Министерства здравоохранения   Российской Федерации.
Россия

Алексеева Татьяна Михайловна — доктор медицинских наук, заведующая кафедрой неврологии и психиатрии, заведующая НИЛ цереброваскулярной патологии НИО неврологии и нейрореабилитации. 

ул. Аккуратова, д. 2, Санкт-Петербург, 197341. 



Е. Б. Панина
Федеральное государственное бюджетное учреждение   «Национальный медицинский исследовательский центр  имени B. A. Алмaзoвa» Министерства здравоохранения   Российской Федерации.
Россия

Панина Елена Борисовна — кандидат медицинских наук, доцент кафедры неврологии и психиатрии. 

ул. Аккуратова, д. 2, Санкт-Петербург, 197341. 



Т. В. Вавилова
Федеральное государственное бюджетное учреждение   «Национальный медицинский исследовательский центр  имени B. A. Алмaзoвa» Министерства здравоохранения   Российской Федерации.
Россия
Вавилова Татьяна Владимировна — доктор медицинских наук, профессор, заведующая кафедрой лабораторной медицины и генетики. ул. Аккуратова, д. 2, Санкт-Петербург, 197341.


Список литературы

1. Feigin VL, Norrving B, George MG, Foltz JL, Roth GA, Mensah GA. Prevention of stroke: a strategic global imperative. Nat Rev Neurol. 2016;12(9):501–512. doi:10.1038/nrneurol.2016.107

2. Brouns R, De Deyn PP. The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg. 2009;111 (6):483–495. doi:10.1016/j.clineuro.2009.04.001

3. Saengen AK, Christenson RN. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation and treatment. Clin. Chem. 2010;56(1):21–33. doi:10.1373/clinchem. 2009.133801

4. Lo EН, Wang X, Cuzner ML. Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res. 2002;69(1):1–9.

5. Montaner J, Alvarez-Sabin J, Molina C, Anglés A, Abilleira S Arenillas J et al. Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke. 2001;32(8):1759–1766.

6. Alvarez-Sabin J, Delgado P, Abilleira S, Molina CA, Arenillas J, Ribó M et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke. 2004;35 (6):1316–1322. doi:10.1161/01.STR.0000126827. 69286.90

7. Vukasovic I, Tesija-Kuna A, Topic E, Supanc V, Demarin V, Petrovcic M. Matrix metalloproteinases and their inhibitors in different acute stroke subtypes. Clin Сhem Lab Med. 2006;44 (4):428–434. doi:10.1515/CCLM.2006.079

8. Montaner J, Alvarez-Sabin J, Molina CA, Anglés A, Abilleira S, Arenillas J et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001;32(12):2762–2767.

9. Persson L, Hardemaric HG, Gustafsson J, Rundström G, Mendel-Hartvig I, Esscher T et al. S-100 protein and neuron-specific enolase in cerebrospinal fluid and serum: markers of cell damage in human central nervous system. Stroke. 1987;18(5):911–918.

10. Abraha HD, Butterworth RJ, Bath PM, Wassif WS, Garthwaite J, Sherwood RA. Serum S-100 protein, relationship to clinical outcome in acute stroke. Ann Clin Biochem. 1997;34 (4):366–370.

11. Elting JW, de Jager AE, Teelken AW, Schaaf MJ, Maurits NM, van der Naalt J et al. Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci. 2000;181(1–2):104–110.

12. Foerch C, de Jager AE, Teelken AW, Schaaf MJ, Maurits NM, van der Naalt J et al. S100B as a surrogate marker for successful dot fysis in hyperacute middle cerebral artery occlusion. J Neurol Neurosurg Psychiatry. 2003;74(3):322–325.

13. Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA. Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem. 2003;49(10):1752–1762.

14. Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: A comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 2000;31(11): 2670–2677.

15. Allard L, Burkhard PR, Lescuyer P et al. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin Chem. 2005;51(11):2043–2051. doi:10. 1373/clinchem.2005.053942

16. Andersson J, Johansson L, Ladenvall P, Wiklund PG, Stegmayr B, Jern C et al. С-reactive protein is a determinant of firstever stroke: prospective nested case-referent study. Cerebrovasc Dis. 2009; 27(6):544–551. doi:10.1159/000214217

17. Kaplan RC, McGinn AP, Baird AE, Hendrix SL, Kooperberg C, Lynch J et al. Inflammation and hemostasis biomarkers for predicting stroke in postmenopausal women: the Women’s Health Initiative Observational Study. J Stroke Cerebrovasc Dis. 2008;17(6):344–355. doi:10.1016/j.jstrokecere brovasdis.2008.04.006

18. Lynch JR., Blessing R, White WD, Grocott HP, Newman MF, Laskowitz DT. Novel diagnostic test for acute stroke. Stroke. 2004;35(1): 57–63. doi:0.1161/01.STR.0000105927.62344.4C

19. Reynolds MA, Kirchick HJ, Dahlen JR, Anderberg JM, McPherson PH, Nakamura KK et al. Early biomarkers of stroke. Clin Chem. 2003;49(10):1733–1739.

20. Allard L, Lescuyer P, Burgess J, Leung KY, Ward M, Walter N et al. ApoC–I and ApoC–III as potential plasmatic markers to distinguish between ischemic and haemorrhagic stroke. Proteomics. 2004;4(8):2242–2251. doi:10.1002/pmic.200300809

21. Makikallio AM, Makikallio TH, Korpelainen JT et al. Natriuretic peptides and mortality after stroke. Stroke. 2005;36 (5):1016–1120. doi:10.1161/01.STR.0000162751.54349

22. Montaner J, Perea-Gainza M, Delgado P, Ribó M, Chacón P, Rosell A et al. Etiologic diagnosis of ischemic stroke subtypes with plasma biomarkers. Stroke. 2008;39(8):2280–2287. doi:10.1161/STROKEAHA.107.505354

23. Wunderlich MT, Hanhoff T, Goertler M, Spener F, Glatz JF, Wallesch CW et al. Release of braintype and heart-type fatty acidbinding proteins in serum after acute ischaemic stroke. J. Neurol. 2005;252(6):718–724. doi:10.1007/s00415–005–0725-z

24. Pelsers MMAL, Hanhoff T, Van der Voort D, Arts B, Peters M, Ponds R et al. Brain-type and hearth-type fatty acid-binding proteins in the brain; tissue distribution and clinical utility. Clin Chem. 2004;50(9):1568–1575.

25. Jauch EC, Lindsell C, Broderick J, Fagan SC, Tilley BC, Levine SR et al. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke. 2006; 37(10): 2508–2513. doi:10.1161/01. STR.0000242290.01174.9e

26. Hill MD, Jackowski G, Bayer N, Lawrence M, Jaeschke R et al. Biochemical markers in acute ischemic stroke. CMAJ 2000;162(8):1139–1140.

27. Unden J, Strandberg K, Malm J, Campbell E, Rosengren L, Stenflo J et al. Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J Neurol. 2009;256(1): 72–77. doi:10.1007/s00415– 009–0054–8.

28. Anand N, Stead LG. Neuron-specific enolase as a marker for acute ischemic stroke: a systematic review. Cerebrovasс Dis. 2005;20(4): 213–219. doi:10.1159/000087701

29. Laskowitz DT, Kasner SE, Saver J, Remmel KS, Jauch EC; BRAIN Study Group. Clinical usefulness of a biomarkerbased diagnostic test for acute stroke: the biomarker rapid assessment in ischemic injury (BRAIN) study. Stroke. 2009;40 (1):77–85. doi:10.1161/STROKEAHA.108.516377

30. Folsom AR, Rosamond WD, Shahar E, Cooper LS, Aleksic N, Nieto FJ et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. Circulation. 1999;100 (7):736–742.

31. Laskowitz DT, Blessing R, Floyd J, White WD, Lynch JR. Panel of biomarkers predicts stroke. Ann N Y Acad Sci. 2005;1053: 30. doi:10.1196/annals.1344.051

32. Kato M, Slack FJ. MicroRNAs: small molecules with big roles — C. elegans to human cancer. Biol Cell. 2008; 100(2):71–81. doi:10.1042/BC20070078

33. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010; 50(4):298–301. doi:10.1016/j.ymeth.2010.01.032

34. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513–10518. doi:10.1073/pnas.0804549105

35. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE. 2012;7:e30679. doi:10.1371/journal. pone.0030679

36. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE. 2008;3(11): e3694. doi:10.1371/journal. pone.0003694

37. Arroyo JD, Chevillet JR, Kroh EM. Ruf IK, Pritchard CC, Gibson DF et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108(12):5003–5008. doi:10. 1073/pnas.1019055108

38. Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Röxe T. et al. Characterization of levels and cellular transfer of circulating lipoproteinbound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(6):1392–1400. doi:10.1161/ATVBAHA. 112.300741

39. Eldh M, Lotvall J, Malmhall C, Ekstrom K. Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol. 2012;50(4):278–286. doi:10.1016/j.molimm.2012.02.001

40. McAlexander МА, Phillips МJ, Witwer КW. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front Genet. 2013 May 16;4:83. doi:10.3389/fgene.2013.00083

41. Eldh M, Lotvall J, Malmhall C, Ekstrom K. Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol. 2012;50(4):278–286. doi:10.1016/j.molimm.2012.02.001

42. Pritchard СС, Cheng НН, Tewari М. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 2012;13(5):358– 369. doi:10.1038/nrg3198

43. Власов В. В., Рыкова Е. Ю., Пономарева А. А., Запорожченко И. А., Морозкин Е. С., Чердынцева Н. В. и др. Циркулирующие микроРНК крови при раке легкого: перспективы использования для диагностики, прогноза и оценки эффективности терапии. Молекулярная биология. 2015;49(1):55–66. doi:10.7868/S0026898415010164 [Vlasov VV, Rykova E.Yu., Ponomareva AA, Zaporozhchenko IA, Morozkin ES, Cherdyntseva NV et al. Circulating blood microRNAs in lung cancer: use perspectives for diagnosis, prognosis and evaluation of the effectiveness of therapy. Molekulyarnya Biologiya = Molecular biology. 2015; 49(1):55–66. doi:10.7868/S0026898415010164 In Russian].

44. Jeyaseelan K, Lim KY, Armugam A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008;39 (3):959–966. doi:10.1161/STROKEAHA.107.500736

45. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30(1):92–101. doi:10.1038/jcbfm.2009.186

46. Liu FJ, Lim KY, Kaur P, Sepramaniam S, Armugam A, Wong PT et al. MicroRNAs involved in regulating spontaneous recovery in embolic stroke model. PLoS One. 2013;8(6):66393. doi:10.1371/journal.pone.0066393

47. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab. 2009;29(4):675–687. doi:10.1038/jcbfm.2008.157

48. Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One. 2012;7(2):e32662. doi:10.1371/journal.pone.0032662

49. Zeng L, He X, Wang Y, Tang Y, Zheng C, Cai H. et al. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther. 2014;21 (1):37–43. doi:10.1038/gt.2013.55

50. Dhiraj DK, Chrysanthou E, Mallucci GR, Bushell M. MiRNAs-19b, -29b-2 and -339-5p show an early and sustained upregulation in ischemic models of stroke. PLoS One. 2013;8(12): e83717. doi:10.1371/journal.pone.0083717

51. Tan KS, Armugam A, Sepramaniam S, Lim KY, Lim KY, Setyowati et al. Expression profile of MicroRNAs in young stroke patients. PLoS One. 2009;4(11): e7689. doi:10.1371/journal. pone.0007689

52. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci 2011;3:1265–1272.

53. Gan CS, Wang CW, Tan KS. Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res. 2012;11(1):147–152. doi:10.4238/2012.January.27.1

54. Tan JR, Tan KS, Koo YX, Yong FL, Wang CW, Armugam A et al. Blood microRNAs in low or no risk ischemic stroke patients. Int J Mol Sci. 2013;14(1):2072–2084. doi:10.3390/ijms14012072

55. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y et al. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol. 2013;13(1):178. doi:10.1186/14712377-13-178

56. Tsai PC, Liao YC, Wang YS, Lin HF, Lin RT, Juo SH. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res 2013;50(4):346–354. doi:10.1159/000351767

57. Sepramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP et al. Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci. 2014;15(1):1418–1432. doi:10.3390/ijms15011418

58. Jickling GC, Ander BP, Zhan XD, Noblett B, Stamova B, Liu D. MicroRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One. 2014;9(6): 99283. doi:10.1371/journal.pone.0099283

59. Wang W, Sun G, Zhang L, Shi L, Zeng Y. Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans. J Stroke Cerebrovasc Dis. 2014;23 (10):2607–2613. doi:10.1016/j.jstrokecerebrovasdis.2014.06.002

60. Wu J, Du K, Lu X. Elevated expressions of serum miR-15a, miR-16, and miR-17–5p are associated with acute ischemic stroke. Int J Clin Exp Med. 2015;8(11):21071–21079.

61. Kim JM, Jung KH, Chu K, Lee ST, Ban J, Moon J. et al. Atherosclerosis-related circulating MicroRNAs as a predictor of stroke recurrence. Transl Stroke Res. 2015;6(3):191–197. doi.org/10.1007/ s12975–015–0390–1.

62. Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H et al. Increased brain-specific miR-9 and miR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One. 2016;11(9):e0163645. doi:10.1371/journal.pone.0163645

63. Chen Y, Song Y, Huang J, Qu M, Zhang Y, Geng J et al. Increased circulating exosomal miRNA-223 is associated with acute ischemic stroke. Front Neurol. 2017;8:57. doi:10.3389/ fneur.2017.00057

64. Wang Y, Ma Z, Kan P, Zhang B. The diagnostic value of serum miRNA-221–3p, miRNA-382–5p and miRNA-4271 in ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26(5):1055– 1060. doi:10.1016/j.jstrokecerebrovasdis.2016.12.019

65. Chen Z, Wang K, Huang J, Zheng G, Lv Y, Luo N. et al. Upregulated serum MiR-146b serves as a biomarker for acute ischemic stroke. Cell Physiol Biochem. 2018;45(1):397–405. doi:10.1159/000486916


Для цитирования:


Топузова М.П., Алексеева Т.М., Панина Е.Б., Вавилова Т.В. Возможности использования микроРНК в качестве биомаркера при диагностике инсульта. Артериальная гипертензия. 2018;24(5):521-530. https://doi.org/10.18705/1607-419X-2018-24-5-521-530

For citation:


Topuzova M.P., Alekseeva T.M., Panina E.B., Vavilova T.V. MicroRnA as a diagnostic biomarker in stroke. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2018;24(5):521-530. (In Russ.) https://doi.org/10.18705/1607-419X-2018-24-5-521-530

Просмотров: 179


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)