Preview

Артериальная гипертензия

Расширенный поиск

Взаимосвязь дефицита фолатов, гипергомоцистеинемии и метаболизма глутатиона у больных артериальной гипертензией

https://doi.org/10.18705/1607-419X-2020-26-6-656-664

Полный текст:

Аннотация

Актуальность. Артериальная гипертензия (АГ) нередко сопровождается дефицитом фолиевой кислоты (ФК) и гипергомоцистеинемией (ГГЦ). Глутатион восстановленный (ГлВ) и зависимые от него ферменты определяют состояние клеточной антиоксидантной и окислительно-восстановительной систем при сердечно-сосудистой патологии.
Цель работы — оценить взаимосвязь статуса ФК и наличия ГГЦ с ферментами метаболизма глутатиона и окислительно-восстановительным состоянием глутатиона эритроцитов при АГ.
Материалы и методы. В образцах крови от 43 больных АГ, находившихся на стационарном лечении в клиниках ПСПбГМУ им. И. П. Павлова, определяли концентрацию ФК, общего гомоцистеина
(оГци) в плазме, а также содержание ГлВ, активность глутатионпероксидазы и глутатионредуктазы (ГР) в эритроцитах.
Результаты. В основной группе активность ГР положительно коррелировала с концентрацией ФК (R = 0,415; p = 0,001). Выявлено статистически значимое снижение активности ГР (в Ед/г Hb) в подгруппе с пониженным уровнем ФК [0,8 (0,5–1,1)] по сравнению с подгруппой без дефицита ФК [1,2 (0,9–2,0)]. Уровень ГлВ (в мкМ/г Hb) был также ниже (p < 0,018) в подгруппе с недостаточностью ФК [1,3 (0,9–2,1)] по сравнению с подгруппой с нормальным уровнем ФК [1,8 (1,5–4,6)]. Установлено статистически значимое снижение уровня ГлВ и активности ГР в подгруппе с ГГЦ по сравнению с соответствующими параметрами в подгруппе без ГГЦ. Однако даже в отсутствие ГГЦ у больных с дефицитом ФК обнаружено статистически значимое понижение активности ГР по сравнению с больными без дефицита ФК. При этом ГР положительно коррелировала с ФК (R = 0,564; p = 0,03).
Заключение. Дефицит ФК может усиливать недостаточность активности ГР независимо от уровня оГци. Показатель активности ГР в эритроцитах может рассматриваться как возможный маркер функционального дефицита ФК в отсутствии ГГЦ.

Об авторах

Л. А. Александрова
Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова, Санкт-Петербург, Россия
Россия

Александрова Людмила Александровна — кандидат биологических наук, старший научный сотрудник отдела биохимии Научно-образовательного института биомедицины

ул. Л. Толстого, д.6–8, Санкт-Петербург, 197022



Т. Ф. Субботина
Первый Санкт-Петербургский государственный медицинский университет имени академика И. П. Павлова, Санкт-Петербург, Россия
Россия

Субботина Татьяна Федоровна —доктор медицинских наук, профессор, руководитель лаборатории биохимического мониторинга отдела биохимии Научно-образовательного института биомедицины

Санкт-Петербург



А. А. Жлоба
Государственное бюджетное образовательное учреждение высшего профессионального образования «Первый Санкт-Петербургский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации
Россия

Жлоба Александр Анатольевич — доктор медицинских наук, профессор, руководитель отдела биохимии Научно-образовательного института биомедицины

Санкт-Петербург



Список литературы

1. Pravenec M, Kozich V, Krijt J, Sokolová J, Zídek V, Landa V et al. Folate deficiency is associated with oxidative stress, increased blood pressure, and insulin resistance in spontaneously hypertensive rats. Am J Hypertens. 2013;26(1):135–140. doi:10.1093/ajh/hps015

2. Yi X, Zhou Y, Jiang D, Li X, Guo Y, Jiang X. Efficacy of folic acid supplementation on endothelial function and plasma homocysteine concentration in coronary artery disease: a meta-analysis of randomized controlled trials. Exp Ther Med. 2014;7(5):1100–1110. doi:10.3892/etm.2014.1553

3. Stanger O. Physiology of folic acid in health and disease. Curr Drug Metab. 2002;3(2):211–223. doi:10.2174/1389200024605163

4. Anguera MC, Suh JR, Ghandour H, Nasrallah IM, Selhub J, Stover PJ. Methylenetetrahydrofolate synthetase regulates folate turnover and accumulation. J Biol Chem. 2003;278(32):29856– 29862. doi:10.1074/jbc.M302883200

5. An Y, Feng L, Zhang X, Wang Y, Wang Y, Tao L et al. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD 1. Clin Epigenetics. 2019;11(1):139. doi:10.1186/s13148-019-0741-y

6. Cui S, Lv X, Li W, Li Z, Liu H, Gao Y et al. Folic acid modulates VPO1 DNA methylation levels and alleviates oxidative stress-induced apoptosis in vivo and in vitro. Redox Biol. 2018;19:81–91. doi:10.1016/j.redox.2018.08.005

7. Полтавцева О. В., Нестеров Ю. И., Тепляков А. Т. Гомоцистеинемия у пациентов с артериальной гипертензией и цереброваскулярными осложнениями. Сибирский медицинский журнал. 2012;27(4):37–41. [Poltavtseva OV, Nesterov UI, Teplyakov AT. Homocysteinemia in patients with arterial hypertension and cerebrovascular complications. Sibirskiy Meditsinskiy Jurnal = Siberian Medical Journal. 2012;27(4):37–41. In Russian].

8. Жлоба А.А., Субботина Т.Ф. Оценка фолатного статуса с использованием общего гомоцистеина у пациентов с гипертонической болезнью. Российский медицинский журнал. 2019;25(3):158–165. [The evaluation of folate status using total homocysteine in hypertensive patients. Rossijskiy Meditsinskiy Zhurnal = Russian Medical Journal. 2019;25(3):158–165. In Russian].

9. Жлоба А. А. Лабораторная диагностика при гипергомоцистеинемии. Клинико-лабораторный консилиум. 2009;26(1):49–60. [Zhloba AA. Laboratory diagnosis of hyperhomocysteinemia. Klinico-laboratornyy Konsillium = Clinical Laboratory Consillium. 2009;26(1):49–60. In Russian].

10. Essouma M, Noubiap JN. Therapeutic potential of folic acid supplementation for cardiovascular disease prevention through homocysteine lowering and blockade in rheumatoid arthritis patients. Biomark Res. 2015;3:24. doi:10.1186/s40364-015-0049-9

11. Shen M, Tan H, Zhou S, Retnakaran R, Smith GN, Davidge ST et al. Serum folate shows an inverse association with blood pressure in a cohort of chinese women of childbearing age: A Cross-Sectional Study. PLoS One. 2016;11(5):e0155801. doi:10. 1371/journal.pone.0155801

12. Verhaar MC, Stroes E, Rabelink TJ. Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2002;22(1):6–13. doi:10.1161/hq0102.102190

13. Wang Y, Jin Y, Wang Y, Li L, Liao Y, Zhang Y et al. The effect of folic acid in patients with cardiovascular disease: A systematic review and meta-analysis. Medicine (Baltimore). 2019;98(37):e17095. doi:10.1097/MD.000000000001709512

14. Bunout D, Petermann M, Hirsch S, de la Maza P, Suazo M, Barrera G et al. Low serum folate but normal homocysteine levels in patients with atherosclerotic vascular disease and matched healthy controls. Nutrition. 2000;16(6):434–438. https://doi.org/10.1016/S0899-9007(00)00289-6

15. Stanhewicz AE, Kenney WL. Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr Rev. 2017;75(1):61–70. doi:10.1093/nutrit/nuw053

16. Yuyun MF, Ng LL, Ng GA. Endothelial dysfunction, endothelial nitric oxide bioavailability, tetrahydrobiopterin, and 5-methyltetrahydrofolate in cardiovascular disease. Where are we with therapy? Microvasc Res. 2018;119:7–12. doi:10.1016/j.mvr.2018.03.012

17. Микашинович З. И., Нагорная Г. Ю., Коваленко Т. Д. Состояние кислородзависимых процессов в клетках крови подростков, страдающих артериальной гипертензией в сочетании с дискинезией желчевыводящих путей. Журнал фундаментальной медицины и биологии. 2013;(3):60–62. doi:10.21886/2219-8075-2013-3-60-62. [Mikashinowich ZI, Nagornaya GJ, Kovalenko TD. The role of antioxidant enzymes in pathogenesis of arterial hypertension at teenagers. Med Herald South Russ. 2013;(3):60–62. doi:10.21886/2219-8075-2013-3-60-62. In Russian].

18. Montezano AC, Touyz RM. Molecular mechanisms of hypertension — reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol. 2012;28(3):288–295. doi:10.1016/j.cjca.2012.01.017

19. Montezano AC, Touyz RM. Reactive oxygen species, vascular noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20(1):16–182. doi:10.1089/ars.2013.5302

20. Rybka J, Kupczyk D, Kędziora-Kornatowska K, Motyl J, Czuczejko J, Szewczyk-Golec K et al. Glutathione-related antioxidant defense system in elderly patients treated for hypertension. Cardiovasc Toxicol. 2011;11(1):1–9. doi:10.1007/s12012-010-9096-5

21. Ballatori N, Krance SM, Notenboom SN, Shi S, Tieu K, Hammond CL. Glutathione dysregulation and the etiology and progression of human diseases. Biol Chem. 2009;390(3):191–214. doi:10.1515/BC.2009.033

22. Александрова Л.А., Миронова Ж.А., Филиппова Н.А., Трофимов В. А. Состояние системы глутатиона в эритроцитах у пациентов с пароксизмальной ночной гемоглобинурией. Регионарное кровообращение и микроциркуляция. 2015;14(4):60– 65. doi:10.24884/1682-6655-2015-14-4-60-65. [Alexandrova LA, Mironova JA, Filippova NA, Тrjofimov VI. Glutathione metabolism of erythrocytes in the paroxysmal nocturnal hemoglobinuria. Regionarnoe Krovoobrashchenie i Mikrotsirkulyatsiya = Regional Blood Circulation and Microcirculation. 2015;14(4):60–65. doi:10.24884/1682-6655-2015-14-4-60-65. In Russian].

23. Zhloba AA, Subbotina TF. Homocysteinylation score of high molecular weight plasma proteins. Amino Acids. 2014;46(4):893–899. doi:10.1007/s00726-013-1652-4

24. Chaves FJ, Mansego ML, Blesa S, Gonzalez-Albert V, Jimenez J, Tormos MC et al. Inadequate cytoplasmic antioxidant enzymes response contributes to the oxidative stress in human hypertension. Am J Hypertens. 2007;20(1):62–69. doi:10.1016/jamjhyper.2006.06.006

25. Silva AP, Marinho C, Goncalves MC, Monteiro C, Laires MJ, Falcao LM et al. Decreased erythrocyte activity of methemoglobin and glutathione reductases may explain age-related high blood pressure. Rev Port Cardiol. 2010;29(3):403–412.

26. Grossman E. Does increased oxidative stress cause hypertension? Diabetes Care. 2008;31(Suppl. 2):185–189. doi:10.2337/dc08-s246

27. Mosharov E, Cranford MR, Banerjee R. The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the trassulfuration pathway and its regulation by redox changes. Biochemistry. 2000;39(42):13005–13011. doi:10.1021/bi001088w

28. Chen N, Liu Y, Greiner CD, Holtzman JL. Physiologic concentrations of homocysteine inhibit the human plasma GSH peroxidase that reduces organic hydroperoxides. J Lab Clin Med. 2000;136(1):58–65. doi:10.1067/mlc.2000.107692

29. Handy DE, Zhang Y, Loscalzo J. Homocysteine downregulates cellular glutathione peroxidase (GPx1) by decreasing translation. J Biol Chem. 2005;280(16):15518–15525. doi:10.1074/jbc.M501452200

30. Caruso R, Campolo J, Sedda V, De Chiara B, Dellanoce C, Baudo F et al. Effect of homocysteine lowering by 5-methyltetrahydrofolate on redox status in hyperhomocysteinemia. J Cardiovasc Pharmacol. 2006;47(4):549–555. doi:10.1097/01.fjc.0000211748.16573.31

31. Shaw S, Jayatilleke E, Herbert V, Colman N. Cleavage of folates during ethanol metabolism. Biochem J. 1989;257(1):277–280. doi:10.1042/bj2570277

32. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–492. doi:10.1093/jn/134.3.489

33. Brain KL, Allison BJ, Niu Y, Cross CM, Itani N, Kane AD et al. Intervention against hypertension in the next generation programmed by developmental hypoxia. PLOS Biology. 2019; 17(1): e2006552. doi:10.1371/journal.pbio.2006552

34. Taddei S, Virdis A, Ghiadoni L, Sudano I, Salvetti A. Antihypertensive drugs and reversing of endothelial dysfunction in hypertension. Curr Hypertens Rep. 2000;2(1):64–70. doi:10.1007/s11906-000-0061-8

35. Austin R, Lentz S, Werstuck, G. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004;11(Suppl. 1): S56–S64. doi:10.1038/sj.cdd.4401451

36. Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V et al. Blood glutathione redox status and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Epigenetics. 2013;8(7):730–738. doi:10.4161/epi.25012

37. Mahajan AS, Babbar R, Kansal N, Agarwal SK, Ray PC. Antihypertensive and antioxidant action of amlodipine and vitamin C in patients of essential hypertension. J Clin Biochem Nutr. 2007;40(2):141–147. doi:10.3164/jcbn.40.141

38. Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: The CSPPT Randomized Clinical Trial. J Am Med Assoc. 2015;313(13):1325–1335. doi:10.1001/jama.2015.2274


Для цитирования:


Александрова Л.А., Субботина Т.Ф., Жлоба А.А. Взаимосвязь дефицита фолатов, гипергомоцистеинемии и метаболизма глутатиона у больных артериальной гипертензией. Артериальная гипертензия. 2020;26(6):656-664. https://doi.org/10.18705/1607-419X-2020-26-6-656-664

For citation:


Aleksandrova L.A., Subbotina T.F., Zhloba A.A. The relationship of folate deficiency, hyperhomocysteinemia and glutathione metabolism in hypertensive patients. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(6):656-664. https://doi.org/10.18705/1607-419X-2020-26-6-656-664

Просмотров: 147


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1607-419X (Print)
ISSN 2411-8524 (Online)