Renal denervation may attenuate the severity of MRI-signs of vascular wall damage in diabetic patients with resistant hypertension due to the anti-inflammatory effect
https://doi.org/10.18705/1607-419X-2020-26-5-552-563
Abstract
About the Authors
A. Yu. FalkovskayaRussian Federation
Allа Yu. Falkovskaya, MD, PhD, Senior Research Scientist, Department of Hypertension
111A, Kievskaya street, Tomsk, 634012
Phone: 8(3822)55–82–25
V. F. Mordovin
Russian Federation
Victor F. Mordovin, MD, PhD, Head, Department of Hypertension
Tomsk
N. I. Rumshina
Russian Federation
Nadegda I. Rumshina, MD, PhD, Researcher, Researcher, Medical Radiologist, Department of Radiology and Tomography
Tomsk
S. E. Pekarskiy
Russian Federation
Stanislav E. Pekarskiy, MD, PhD, Leading Research Scientist, Department of Interventional Arrhythmology
Tomsk
T. M. Ripp
Russian Federation
Tatyana M. Ripp, MD, PhD, Leading Research Scientist, Department of Hypertension
Tomsk
M. A. Manukyan
Russian Federation
Musheg A. Manukyan, Postgraduate Research Student, Department of Hypertension
Tomsk
I. V. Zyubanova
Russian Federation
Irina V. Zyubanova, MD, PhD, Research Scientist, Department of Hypertension
Tomsk
V. A. Lichikaki
Russian Federation
Valeria A. Lichikaki, MD, PhD, Research Scientist, Department of Hypertension
Tomsk
E. S. Sitkova
Russian Federation
Ekaterina S. Sitkova, MD, PhD, Department of Interventional Arrhythmology
Tomsk
T. E. Suslova
Russian Federation
Tatyana E. Suslova, MD, PhD, Leading Researcher, Department of Functional and Laboratory Diagnostics
Tomsk
A. M. Gusakova
Russian Federation
Anna M. Gusakova, PhD, Research Scientist, Department of Functional and Laboratory Diagnostics
Tomsk
I. O. Kurlov
Russian Federation
Igor O. Kurlov, MD, PhD, Researcher, Department of Interventional Arrhythmology
Tomsk
A. E. Baev
Russian Federation
Andrey E. Baev, MD, PhD, Interventional Radiologist, Head, Department of Invasive Cardiology
Tomsk
References
1. Heart Disease and Stroke Statistics — 2019 Update A report from the American Heart Association. Circulation. 2019;139(10): e56-e528. doi:10.1161/CIR.0000000000000659
2. Boytsov SA, Balanova YA, Shalnova SA, Deev AD, Artamonova GV, Gatagonova TM et al. Arterial hypertension among individuals of 25–64 years old: prevalence, awareness, treatment and control. By the data from ECCD. Cardiovasc Ther Prev. 2014;13(4):4–14. doi:10.15829/17288800-2014-4-4-14. In Russian.
3. Climie RE, van Sloten TT, Bruno R-M, Taddei S, Empana J-P, Stehouwer CDA et al. Macrovasculature and microvasculature at the crossroads between type 2 diabetes mellitus and hypertension. Hypertension. 2019;73(6):1138–1149. doi:10.1161/HYPERTENSIONAHA.118.11769
4. Zhernakova YuV, Chazova IE, Oshchepkova EV, Shalnova SA, Konradi AO, Rotar OP et al. The prevalence of diabetes mellitus in population of hypertensive patients according to ESSE RF study results. Systemic Hypertension. 2018;15(1):56–62. doi:10.26442/2075-082X_15.1.56-62. In Russian.
5. Dal Canto E, Ceriello A, Rydén L, Ferrini M, Hansen TB, Schnell O et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019;26(2_suppl):25–32. doi:10.1177/2047487319878371
6. Vasiltseva OYa, Vorozhtsova IN, Krestinin AV, Stefanova EV, Karpov RS. Effect of main nosological pathology and selected strategy of management on outcome of pulmonary artery thromboembolism. Kardiologiya = Cardiology. 2017;1:37–41. doi:10.18565/cardio.2017.1.37-41. In Russian.
7. Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med. 2018;215(1):21–33. doi:10.1084/jem.20171773
8. Kenney MJ, Ganta CK. Autonomic nervous system and immune system interactions. Compr Physiol. 2014;4(3):1177–1200. doi:10.1002/cphy.c130051
9. Rozanov AV, Kotovskaya YuV, Tkacheva ON. The role of activation of the sympathetic nervous system in the pathogenesis of arterial hypertension and the choice of a method for the treatment of arterial hypertension Eurasian Cardiol J. 2018; 20(3):92–94. In Russian.
10. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DASG. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108(25): 3097–3101.
11. Daugherty SL, Powers JD, Magid DJ, Tavel HM, Masoudi FA, Margolis KL et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125(13):1635–1642. doi:10.1161/CIRCULATIONAHA.111.068064
12. Zvartau NE, Konradi AO. Update on interventional approaches to treatment of hypertension. Arterial’naya Gipertenziya = Arterial Hypertension. 2015;21(5):450–458. doi:10.18705/1607-419X-2015-21-5-450-458. In Russian.
13. Chichkova TJu, Mamchur SE. Renal denervation: a review. Kompleksnye Problemy SerdechnoSosudistyh Zabolevanij. 2016;5(4):101–109. In Russian.
14. Ripp TM, Mordovin VF. Renal denervation, view of a cardiologist. Cardiology: news, opinions, training. 2017;2(13):31–37. In Russian.
15. Bolotov PA, Semitko SP, Klimov VP, Vertkina NV. Transcatheter sympathetic renal denervation for resistant arterial hypertension: the current state. Consilium Medicum. 2018;20(5):40–49. doi:10.26442/20751753_2018.5.40-49. In Russian.
16. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–464. doi:10.1161/HYPERTENSIONAHA.111.00194
17. Esler M. Renal denervation for treatment of drug-resistant hypertension. Trends Cardiovasc Med. 2015;25(2):107–115. doi:10.1016/j.tcm.2014.09.014
18. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P et al. and the Renal Denervation for Hypertension (DENER HTN) investigators. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENER HTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385(9981):1957–1965. doi:10.1016/S0140-6736(14)61942-5
19. Agaeva RA, Danilov NM, Shchelkova GV, Sagaydak OV, Grigin VA, Matchin YuG et al. Radiofrequency renal denervation with mono-electrode and multielectrode device for treatment in patient with uncontrolled hypertension: results of a 6-month follow-up. Systemic Hypertension. 2018;15(4):34–38. doi:10.26442/2075082X.2020.1.200077. In Russian.
20. Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, shamcontrolled, proof-of-concept trial. Lancet. 2017;390(10108):21602170. doi:10.1016/S0140-6736(17)32281-X/
21. Falkovskaya AY, Mordovin VF, Pekarskiy SE, Baev AE, Semke GV, Ripp TM et al. Transcatheter renal denervation in patients with resistant hypertension and type 2 diabetes mellitus has beneficial effects beyond blood pressure reduction. Arterial’naya Gipertenziya = Arterial Hypertension. 2014;20(2):107–112. doi:10.18705/1607-419X-2014-20-2-107-112. In Russian.
22. Ripp TM, Mordovin VF, Pekarskiy SE, Ryabova TP, Zlobina MZ, Semke GV et al. Cardioprotective effects of renal denervation in resistant hypertension: efficiency predictors. Arterial’naya Gipertenziya = Arterial Hypertension. 2014;20(6):559–567. doi:10.18705/1607419X-2014-20-6-559-567. In Russian.
23. Shhelkova GV, Zairova AR, Danilov NM, Rogoza AN, Chazova IE. The local arterial stiffness and vasomotor endothelial function in patients with resistant hypertension and effect of renal denervation on them. Kardiologicheskij Vestnik. 2017;2:10–13. In Russian.
24. Zaldivia MTK, Rivera J, Hering D, Marusic P, Sata Y, Lim B et al. Renal denervation reduces monocyte activation and monocyte-platelet aggregate formation an anti-inflammatory effect relevant for cardiovascular risk. Hypertension. 2017;69(2):323–331. doi:10.1161/HYPERTENSIONAHA.116.08373
25. Maximova AS, Babokin VE, Bukhovets IL, Bobrikova YE, Rogovskaya YV, Lukyanenok PI et al. Contrast-enhanced MRI of aortal atherosclerosis syndrome types and prediction of dissection. J Cardiovasc Magn Reson. 2015;17(1):256. https://doi.org/10.1186/1532-429X-17-S1-P256
26. Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M et al. 25 years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther. 2016;33(1):1–28. doi:10.1007/s12325-015-0275-4
27. Van Hoof Raf HM, Heeneman S, Wildberger JE, Kooi ME. Dynamic contrast-enhanced MRI to study atherosclerotic plaque microvasculature. Curr Atheroscler Rep. 2016;18(6):33. doi:10.1007/s11883–016–0583–4
28. Calcagno C, Ramachandran S, Millon A, Robson PM, Mani V, Fayad Z. Gadolinium-based contrast agents for vessel wall magnetic resonance imaging (MRI) of atherosclerosis. Curr Cardiovasc Imaging Rep. 2013;6(1):11–24. doi:10.1007/s12410012-9177-x
29. Li Z, Bai Y, Li W, Gao F, Kuang Y, Du L et al. Carotid vulnerable plaques are associated with circulating leukocytes in acute ischemic stroke patients: an clinical study based on contrast-enhanced ultrasound. Scientific Reports. 2018;8(1):8849. doi:10.1038/s41598-018-27260-0
30. Grigin VA, Stukalova OV, Korobkin AS, Strazden EYu, Danilov NM, Matchin YG et al. Features non-enhanced magnetic resonance imaging in the selection of candidates for radiofrequency denervation of the renal arteries. Ateroskleroz i Dislipidemii = Atherosclerosis and Dyslipidemia. 2015;4:30–39. In Russian.
31. Ryumshina NI, Baev AE, Falkovskaya AYu, Usov WYu. MR-angiography in assessing the anatomy of the renal arteries before renal sympathetic denervation. REJR. 2019;9(3):118–126. doi:10.21569/2222-7415-2019-9-3-118-126. In Russian.
32. Ryumshina NI, Zyubanova IV, Baev AE, Mordovin VF, Lukyanenok PI, Vusik EA et al. Use of magnetic resonance imaging with paramagnetic contrast in evaluation of local renal denervation impact on the renal arteries walls. Diagnostic Radiol Radiother. 2015;(3):83–89. doi:10.22328/2079-5343-2015-3-83-89. In Russian.
33. Sanders MF, van Doormaal PJ, Beeftink MMA, Bots ML, Fadl Elmula FEM, Habets J et al. on behalf of the European Network COordinating research on Renal Denervation (ENCOReD) Consortium. Renal artery and parenchymal changes after renal denervation: assessment by magnetic resonance angiography. Eur Radiol. 2017;27(9):3934–3941. doi:10.1007/s00330-017-4770-7
34. Pekarskiy S, Baev A, Mordovin V, Semke G, Ripp T, Falkovskaya A et al. Denervation of the distal renal arterial branches versus conventional main renal artery treatment: a randomised controlled trial for treatment of resistant hypertension. J Hypertension. 2017;35(2):369–375. doi:10.1097/HJH.0000000000001160
35. Sakakura K, Tunev S, Yahagi K, O’Brien AJ, Ladich E, Kolodgie FD et al. Comparison of histopathologic analysis following renal sympathetic denervation over multiple time points. Circ Cardiovasc Interv. 2015;8(2):e001813. doi:10.1161/CIRCINTERVENTIONS.114.001813
36. Lang D, Nahler A, Lambert T, Grund M, Kammler J, Kellermair J et al. Anti-inflammatory effects and prediction of blood pressure response by baseline inflammatory state in catheter-based renal denervation. J Clin Hypertens (Greenwich). 2016;18(11):1173–1179. doi:10.1111/jch.12844
37. Franck G, Even G, Gautier A, Salinas M, Loste A, Procopio E et al. Haemodynamic stress-induced breaches of the arterial intima trigger inflammation and drive atherogenesis. Eur Heart J. 2019;40(11):928–937. https://doi.org/10.1093/eurheartj/ehy822
Review
For citations:
Falkovskaya A.Yu., Mordovin V.F., Rumshina N.I., Pekarskiy S.E., Ripp T.M., Manukyan M.A., Zyubanova I.V., Lichikaki V.A., Sitkova E.S., Suslova T.E., Gusakova A.M., Kurlov I.O., Baev A.E. Renal denervation may attenuate the severity of MRI-signs of vascular wall damage in diabetic patients with resistant hypertension due to the anti-inflammatory effect. "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2020;26(5):552-563. (In Russ.) https://doi.org/10.18705/1607-419X-2020-26-5-552-563