Genetic determinants of angiotensin-converting enzyme levels (data from genome-wide studies)
https://doi.org/10.18705/1607-419X-2024-2446
EDN: OXDWFP
Abstract
Angiotensin converting enzyme (ACE) is a key enzyme of the renin-angiotensin- aldosterone system. It plays an important role in the early prognosis, diagnosis and treatment of diseases of the cardiovascular system (CVS), kidneys, and COVID‑19. Among the factors determining the ACE level, genetic factors play an important role. Understanding the role of specific genetic determinants associated with ACE levels is important, as these genetic determinants can be potentially used as markers of high ACE levels and, accordingly, markers of high risk of developing ACE-associated diseases.
Objective. To study the genetic determinants of ACE levels/activity using data genome-wide association search (GWAS).
Design and methods. A search for publications was performed in the GWAS catalog for the period from 2010 to 2024 using the keywords: angiotensin-converting enzyme, ACE.
Results. To date, 7 GWAS studies have been carried out, resulting in identification of 14 polymorphic loci associated with the level / activity of ACE. Among them, the largest number of SNPs is located in two regions of the genome — 17q23.3 (8 SNPs) and 9q34.2 (4 SNPs). Out of these, 79 % (11 SNPs) exhibit pronounced pleiotropic effects and are GWAS-significant in relation to indicators of lipid and carbohydrate metabolism, immune status, are associated with the functional activity of the liver and kidneys, blood pressure levels. These polymorphisms are associated with a number of diseases: CVS, COVID‑19, Alzheimer’s disease, venous thromboembolism. According to GWAS data, the most pronounced pleiotropic effects are exhibited by polymorphisms: rs507666, rs495828, rs8176746 of the ABO gene (9q34.2). According to genome-wide studies with all 14 loci associated with the level / activity of ACE, polymorphisms (more than 60 SNPs) are in linkage disequilibrium, which are associated with various numerous traits associated with lipid / carbohydrate metabolism, immune / vascular reactions, functional state of the liver and kidneys, intercellular interactions, coagulation / anticoagulation system, etc., as well as with cardiovascular diseases, type 2 diabetes mellitus, COVID‑19, etc.
Conclusions. The level / activity of ACE is genetically determined by polymorphisms of predominantly genome regions 17q23.3 and 9q34.2, which exhibit pronounced pleiotropic phenotypic effects.
About the Authors
L. A. KamyshnikovaRussian Federation
Lyudmila A. Kamyshnikova - MD, PhD, Associate Professor, the Department of Faculty Therapy of the Medical Institute
85 Pobedy St., Belgorod, 308015
O. A. Efremova
Russian Federation
85 Pobedy St., Belgorod, 308015
V. V. Fentisov
Russian Federation
85 Pobedy St., Belgorod, 308015
O. A. Bolkhovitina
Russian Federation
85 Pobedy St., Belgorod, 308015
M. I. Churnosov
Russian Federation
85 Pobedy St., Belgorod, 308015
References
1. Martínez-Rodríguez N, Posadas-Romero C, Villarreal-Molina T, Vallejo M, Del-Valle-Mondragón L, Ramírez-Bello J et al. Single nucleotide polymorphisms of the angiotensin-converting enzyme (ACE) gene are associated with essential hypertension and increased ACE enzyme levels in Mexican individuals. PLoS ONE. 2013;8(5):e65700. doi:10.1371/journal.pone.0065700
2. Ned RM, Yesupriya A, Imperatore G, Smelser DT, Moonesinghe R, Chang M. H. et al. The ACE I/D polymorphism in US adults: limited evidence of association with hypertension-related traits and sex-specific effects by race/ethnicity. Am J Hypertens. 2012;25(2):209–215. doi:10.1038/ajh.2011.182
3. Chung CM, Wang RY, Chen JW, Fann CS, Leu HB, Ho HY et al. A genome-wide association study identifies new loci for ACE activity: potential implications for response to ACE inhibitor. Pharmacogenomics J. 2010;10(6):537–544. doi:10.1038/tpj.2009.70
4. Kanugula AK, Kaur J, Batra J, Ankireddypalli AR. Velagapudi R. Renin-angiotensin system: updated understanding and role in physiological and pathophysiological states. Cureus. 2023;15(6):e40725. doi:10.7759/cureus.40725
5. Nehme A, Zouein FA, Zayeri ZD, Zibara K. An update on the tissue renin angiotensin system and its role in physiology and pathology. J Cardiovasc Dev Dis. 2019;6(2):14. doi:10.3390/jcdd6020014
6. Ayari H, Legedz L, Cerutti C, Lantelme P, Feugier P, Gustin MP et al. Mutual amplification of corticosteroids and angiotensin systems in human vascular smooth muscle cells and carotid atheroma. J Mol Med (Berl). 2014;92(11):1201–8. doi:10.1007/s00109-014-1193-7
7. Ivanova TA. Polymorphic loci of AC026703.1 and HFE genes are associated with severe hypertension. Nauchnye rezul’taty biomeditsinskikh issledovaniy = Research Results in Biomedicine. 2023;9(1):22–38. doi:10.18413/2658-6533-2023-9-1-0-2. In Russian.
8. Rudnicki M, Mayer G. Significance of genetic polymorphisms of the renin–angiotensin–aldosterone system in cardiovascular and renal disease. Pharmacogenomics 2009;10:463–476. doi:10.2217/14622416.10.3.463
9. Sultan RH, Elesawy BH, Ali TM, Abdallah M, Assal HH, Ahmed AE et al. Correlations between kidney and heart function bioindicators and the expressions of toll-like, ACE2, and NRP‑1 receptors in COVID‑19. Vaccines (Basel). 2022;10(7):1106. doi:10.3390/vaccines10071106
10. Ivanova TA. Sex-specific features of interlocus interactions determining susceptibility to hypertension. Nauchnye rezul’taty biomeditsinskikh issledovaniy = Research Results in Biomedicine. 2024;10(1):53–68. doi:10.18413/2658-6533-2024-10-1-0-3. In Russian.
11. Giani JF, Veiras LC, Shen JZY, Bernstein EA, Cao D, Okwan-Duodu D et al. Novel roles of the renal angiotensin-converting enzyme. Mol Cell Endocrinol. 2021;529:111257. doi:10.1016/j.mce.2021.111257
12. Zhang G, Cui X, Zhang L, Liu G, Zhu X, Shangguan J et al. Uncovering the genetic links of SARS-CoV‑2 infections on heart failure co-morbidity by a systems biology approach. ESC Heart Fail. 2022 Oct;9(5):2937–2954. doi:10.1002/ehf2.14003
13. Caron B, Patin E, Rotival M, Charbit B, Albert ML, Quintana-Murci L et al. Milieu Intérieur Consortium. Integrative genetic and immune cell analysis of plasma proteins in healthy donors identifies novel associations involving primary immune deficiency genes. Genome Med. 2022;14(1):28. doi:10.1186/s13073-022-01032-y
14. Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F.et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86:1343–1346.
15. Kauwe JS, Bailey MH, Ridge PG, Perry R, Wadsworth ME, Hoyt KL et al. Alzheimer’s Disease Neuroimaging Initiative; Fagan AM, Holtzman DM, Morris JC, Goate AM. Genome-wide association study of CSF levels of 59 alzheimer’s disease candidate proteins: significant associations with proteins involved in amyloid processing and inflammation. PLoS Genet. 2014;10(10):e1004758. doi:10.1371/journal.pgen.1004758
16. Pietzner M, Wheeler E, Carrasco-Zanini J, Cortes A, Koprulu M, Wörheide MA et al. Langenberg C. Mapping the proteo-genomic convergence of human diseases. Science. 2021;374(6569): eabj1541. doi:10.1126/science.abj1541
17. Bone WP, Siewert KM, Jha A, Klarin D, Damrauer SM. Multi-trait association studies discover pleiotropic loci between Alzheimer’s disease and cardiometabolic traits. Alzheimers Res Ther. 2021;13(1):34. doi:10.1186/s13195-021-00773-z.
18. Surapaneni A, Schlosser P, Zhou L, Liu C, Chatterjee N, Arking DE et al. Identification of 969 protein quantitative trait loci in an African American population with kidney disease attributed to hypertension. Kidney Int. 2022;102(5):1167–1177. doi:10.1016/j.kint.2022.07.005
19. Gudjonsson A, Gudmundsdottir V, Axelsson GT, Gudmundsson EF, Jonsson BG, Launer LJ et al. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat Commun. 2022;13(1):480. doi:10.1038/s41467-021-27850-z
20. Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C, Aguirre M еt al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet. 2021;53(2):185–194. doi:10. я1038/s41588-020-00757-z
21. Zhou L, He M, Mo Z, Wu C, Yang H, Yu D et al. A genome wide association study identifies common variants associated with lipid levels in the Chinese population. PLoS One. 2013;8(12): e82420. doi:10.1371/journal.pone.0082420
22. Richardson TG, Leyden GM, Wang Q, Bell JA, Elsworth B, Davey Smith G et al. Characterising metabolomic signatures of lipid-modifying therapies through drug target mendelian randomisation. PLoS Biol. 2022;20(2):e3001547. doi:10.1371/journal.pbio.3001547
23. Hoffmann TJ, Ehret GB, Nandakumar P, Ranatunga D, Schaefer C, Kwok PY et al. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat Genet. 2017;49(1):54–64. doi:10.1038/ng.3715
24. Katz DH, Tahir UA, Bick AG, Pampana A, Ngo D, Benson MD et al. National Heart, Lung, and Blood Institute TOPMed (Trans-Omics for Precision Medicine) Consortium†. Whole genome sequence analysis of the plasma proteome in black adults provides novel insights into cardiovascular disease. Circulation. 2022;145(5):357–370. doi:10.1161/CIRCULATIONAHA.121.055117
25. van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res. 2018;122(3):433–443. doi:10.1161/CIRCRESAHA.117.312086
26. de Vries PS, Brown MR, Bentley AR, Sung YJ, Winkler TW, Ntalla I et al. Multiancestry genome-wide association study of lipid levels incorporating gene-alcohol interactions. Am J Epidemiol. 2019;188(6):1033–1054. doi:10.1093/aje/kwz005
27. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010;42(3):210–5. doi:10.1038/ng.531
28. Guo H, Li T, Wen H. Identifying shared genetic loci between coronavirus disease 2019 and cardiovascular diseases based on cross-trait meta-analysis. Front Microbiol. 2022;13:993933. doi:10.3389/fmicb.2022.993933
29. Heit JA, Armasu SM, Asmann YW, Cunningham JM, Matsumoto ME, Petterson TM et al. A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q. J Thromb Haemost. 2012;10(8): 1521–31. doi:10.1111/j.1538-7836.2012.04810.x
30. Vuckovic D, Bao EL, Akbari P, Lareau CA, Mousas A, Jiang T et al. The polygenic and monogenic basis of blood traits and diseases. Cell. 2020;182(5):1214–1231.e11. doi:10.1016/j.cell.2020.08.008
31. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J et al. Genomic atlas of the human plasma proteome. Nature. 2018;558(7708):73–79. doi:10.1038/s41586-018-0175-2.
32. Davyson E, Shen X, Gadd DA, Bernabeu E, Hillary RF, McCartney DL et al. Metabolomic investigation of major depressive disorder identifies a potentially causal association with polyunsaturated fatty acids. Biol Psychiatry. 2023;94(8):630–639. doi:10.1016/j.biopsych.2023.01.027.
33. Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman ÅK, Schork A et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat Metab. 2020 Oct;2(10):1135–1148. doi:10.1038/s42255-020-00287-2
34. Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet. 2021;53(10):1415–1424. doi:10.1038/s41588-021-00931-x.
35. Sung YJ, Winkler TW, de Las Fuentes L, Bentley AR, Brown MR, Kraja AT et al. A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. Am J Hum Genet. 2018;102(3):375–400. doi:10.1016/j.ajhg.2018.01.015.
36. Schwartzentruber J, Cooper S, Liu JZ, Barrio-Hernandez I, Bello E, Kumasaka N et al. Genome-wide meta-analysis, finemapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat Genet. 2021;53(3):392–402. doi:10.1038/s41588-020-00776-w.
37. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–550. doi:10.1038/ng.2982
38. Feofanova EV, Brown MR, Alkis T, Manuel AM, Li X, Tahir UA et al. Whole-genome sequencing analysis of human metabolome in multi-ethnic populations. Nat Commun. 2023 May 30;14(1):3111. doi:10.1038/s41467-023-38800-2. Erratum in: Nat Commun. 2023;14(1):6611.
39. van Rooij FJA, Qayyum R, Smith AV, Zhou Y, Trompet S, Tanaka T et al. Genome-wide trans-ethnic meta-analysis identifies seven genetic loci influencing erythrocyte traits and a role for RBPMS in erythropoiesis. Am J Hum Genet. 2017;100(1):51–63. doi:10.1016/j.ajhg.2016.11.016
40. Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104(1):65–75. doi:10.1016/j.ajhg.2018.11.008.
41. Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J et al. Connecting genetic risk to disease end points through the human blood plasma proteome. Nat Commun. 2017;8:14357. doi:10.1038/ncomms14357. Erratum in: Nat Commun. 2017;8:15345.
42. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet. 2011;43(10):990–5. doi:10.1038/ng.939
43. Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda M et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat Genet. 2018;50(3):390–400. doi:10.1038/s41588-018-0047-6
44. Chen MH, Raffield LM, Mousas A, Sakaue S, Huffman JE, Moscati A et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020;182(5):1198–1213.e14. doi:10.1016/j.cell.2020.06.045
45. Temprano-Sagrera G, Sitlani CM, Bone WP, Martin-Bornez M, Voight BF, Morrison AC et al. Multi-phenotype analyses of hemostatic traits with cardiovascular events reveal novel genetic associations. J Thromb Haemost. 2022;20(6):1331–1349. doi:10.1111/jth.15698
46. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, Daigo Y et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat Genet. 2010;42(3):210–5. doi:10.1038/ng.531.
47. Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570(7762):514–518. doi:10.1038/s41586-019-1310-4.
48. Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J et al. Meta-Analysis of Glucose and Insulin-related Traits Consortium (MAGIC). The trans-ancestral genomic architecture of glycemic traits. Nat Genet. 2021;53(6):840–860. doi:10.1038/ s41588-021-00852-9
49. Wheeler E, Leong A, Liu CT, Hivert MF, Strawbridge RJ, Podmore C et al. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide metaanalysis. PLoS Med. 2017;14(9): e1002383. doi:10.1371/journal.pmed.1002383
50. Dichgans M, Malik R, König IR, Rosand J, Clarke R, Gretarsdottir S et al. METASTROKE Consortium; CARDIoGRAM Consortium; C4D Consortium; International Stroke Genetics Consortium. Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke. 2014;45(1):24–36. doi:10.1161/STROKEAHA.113.002707
51. Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, Sakaue S et al. A saturated map of common genetic variants associated with human height. Nature. 2022;610(7933):704–712. doi:10.1038/s41586-022-05275-y.
52. Wain LV, Vaez A, Jansen R, Joehanes R, van der Most PJ, Erzurumluoglu AM et al. Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney. Hypertension. 2017;70(3):e4‑e19. doi:10.1161/HYPERTENSIONAHA.117.09438
53. Feitosa MF, Kraja AT, Chasman DI, Sung YJ, Winkler TW, Ntalla I et al. Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS One. 2018;13(6):e0198166. doi:10.1371/journal.pone.0198166
54. Huang J, Huffman JE, Huang Y, Do Valle I, Assimes TL, Raghavan S et al. Genomics and phenomics of body mass index reveals a complex disease network. Nat Commun. 2022;13(1):7973. doi:10.1038/s41467-022-35553-2
55. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC et al. Alzheimer Disease Genetics Consortium (ADGC); European Alzheimer’s Disease Initiative (EADI); Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE); Genetic and Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–430. doi:10.1038/s41588-019-0358-2
56. Yet I, Menni C, Shin SY, Mangino M, Soranzo N, Adamski J et al. Genetic influences on metabolite levels: a comparison across metabolomic platforms. PLoS One. 2016;11(4): e0153672. doi:10.1371/journal.pone.0153672
Supplementary files
Review
For citations:
Kamyshnikova L.A., Efremova O.A., Fentisov V.V., Bolkhovitina O.A., Churnosov M.I. Genetic determinants of angiotensin-converting enzyme levels (data from genome-wide studies). "Arterial’naya Gipertenziya" ("Arterial Hypertension"). 2024;30(6):537–552. (In Russ.) https://doi.org/10.18705/1607-419X-2024-2446. EDN: OXDWFP